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This paper deals with the Monte-Carlo methods for evaluating expectations of functionals of
solutions to McKean-Vlasov Stochastic Differential Equations (MV-SDE) with drifts of super-
linear growth. We assume the MV-SDE is approximated by an interacting particle system and
propose two importance sampling (IS) techniques to reduce the variance of the resulting Monte
Carlo estimator. In the complete measure change approach, the IS measure change is applied
simultaneously in the coefficients and in the expectation to be evaluated. In the decoupling
approach we first estimate the law of the solution in a first set of simulations without measure
change and then perform a second set of simulations under the importance sampling measure
using the approximate solution law computed in the first step.

For both approaches, under a constant diffusion coefficient, we use large deviations techniques
to identify an optimisation problem for the candidate measure change. The decoupling approach
yields a far simpler optimisation problem than the complete measure change, however, we can
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implement both algorithms for two examples coming from the Kuramoto model from statistical
physics and show that the variance of the importance sampling schemes is up to 3 orders of mag-
nitude smaller than that of the standard Monte Carlo. The computational cost is approximately
the same as for standard Monte Carlo for the complete measure change and only increases by a
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1. Introduction

The aim of this paper is to develop efficient importance sampling algorithms for comput-
ing the expectations of functionals of solutions to McKean-Vlasov stochastic differential
equations (MV-SDE). MV-SDEs are stochastic differential equations where the coeffi-
cients depend on the law of the solution, typically written in the following form:

dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dWt, X0 = x0,

where µt denotes the law of the process X at time t, and W is a standard Brownian
motion. MV-SDEs, also known as mean-field equations, were originally introduced in
physics to describe the movement of an individual particle amongst a large number of
indistinguishable particles interacting through their mean field. They are now used in a
variety of other domains, such as finance, economics, biology, population dynamics etc.

Development of algorithms for the simulation of MV-SDEs is a very active area of
research. One of the earliest works to consider the error and computational complexity
involved in simulating a MV-SDE was [5]. More recently [24], [26] and [11] among others
(see references therein) developed more efficient methods for simulating MV-SDEs under
Lipschitz coefficients or even stronger assumptions.

A common technique for the simulation of MV-SDEs is to use the interacting particle
representation. Namely, we consider N particles indexed by i = 1, . . . , N , where each
Xi,N satisfies the following SDE,

dXi,N
t = b

(
t,Xi,N

t , µNt

)
dt+ σ

(
t,Xi,N

t , µNt

)
dW i

t , µNt (dx) :=
1

N

N∑
j=1

δXj,Nt
(dx), (1.1)

where Xi,N
0 = x0, δXj,Nt

is the Dirac measure at point Xj,N
t , and the Brownian motions

W i, i = 1, . . . , N are independent. The so-called propagation of chaos result (see, e.g.,
[8]) states that under sufficient conditions, as N → ∞, for every i, the process Xi,N

converges to Xi, the solution of the MV-SDE driven by the Brownian motion W i.
The system (1.1) is a system of ordinary SDE and can be discretized with one of the

many available methods such as the Euler scheme. Let Xi,N,n
t be the i-th component of

the solution of (1.1), discretized on [0, T ] over n steps. The quantity of interest, which,
in our case is θ = E[G(X)], will then be approximated by the Monte Carlo estimator

θ̂N,n =
1

N

N∑
i=1

G(Xi,N,n).

The precision of this approximation is affected by three sources of error.

• The statistical error, that is, the difference between θ̂N,n and E[G(Xi,N,n)].
• The discretization error, that is, the difference between E[G(Xi,N,n)] and E[G(Xi,N )].
• The propagation of chaos error of approximating the MV-SDE with the interacting

particle system, that is, the difference between E[G(Xi,N )] and E[G(X)].
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IS for MV-SDEs 3

The discretization error of ordinary SDEs has been analyzed by many authors, and it is
well known that, e.g., under the Lipschitz assumptions (plus extra regularity or ellipticity)
the Euler scheme has weak convergence error of order 1

n . It is of course also known that

the standard deviation of the statistical error is of order of 1/
√
N .

There has also been some work detailing the error from the propagation of chaos as
a function of N . Essentially for G and X nice enough this error is also of the order
1/
√
N , see for example [27], [4] or [2] for further details. In spite of this relatively slow

convergence, many MV-SDEs have a reasonably “nice” dependence on the law, which
makes the particle approximation a good technique. On the other hand, one often wants
to consider rare events in the context of the MV-SDE, and in this realm the statistical
error will dominate the propagation of chaos error. The focus of this paper is therefore on
the statistical error of the Monte Carlo method. In view of the poor convergence of the
standard Monte Carlo, it is typical to enhance the standard approach with a so-called
variance reduction technique. Importance sampling, which is the focus of this paper, is
one such technique. We will discuss the point of statistical against propagation of chaos
error in more detail in Section 5.

Importance sampling is based on the following identity, valid for any probability mea-
sure Q (absolutely continuous with respect to P).

E[G(X)] = EQ

[
dP
dQ

G(X)

]
.

The variance of the Monte Carlo estimator obtained by simulating X under the measure
Q and correcting by the corresponding Radon-Nikodym density is different from that
of the standard estimator, and can be made much smaller by a judicious choice of the
sampling measure Q.

Importance sampling is most effective in the context of rare event simulation, that
is, when the probability P[G(X) > 0] is small. Since the theory of large deviations is
concerned with the study of probabilities of rare events, it is natural to use measure
changes appearing in or inspired by the large deviations theory for importance sampling.
We refer, e.g., to [17] and references therein for a review of this approach and to [21], [25],
[31] for specific applications to financial models. The large deviations theory, on the one
hand, simplifies the computation of the candidate importance sampling measure, and on
the other hand, allows to define its optimality in a rigorous asymptotic framework.

In this paper we develop importance sampling techniques for MV-SDE with constant
diffusion coefficient. Our main contribution is two-fold. Firstly, we show how one can
apply a change of measure to MV-SDEs, and propose two algorithms, which can carry
this out: the complete measure change algorithm and the decoupling algorithm. In the
complete measure change approach, the IS measure change is applied simultaneously in
the coefficients and in the expectation to be evaluated. In the decoupling approach we
first estimate the law of the solution in a first set of simulations without measure change
and then perform a second set of simulations under the importance sampling measure
using the approximate solution law computed in the first step.

Secondly, we use large deviations techniques to obtain an optimisation problem for the
candidate measure change for both approaches. We focus on the class of Cameron-Martin
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transforms, under which the measure change is given by

dQ
dP

∣∣∣
FT

= E
(∫ T

0

ftdWt

)
:= exp

(∫ T

0

ftdWt −
1

2

∫ T

0

f2
t dt

)
, (1.2)

where ft is a deterministic function. Following earlier works on the subject, we use the
large deviations theory to construct a tractable proxy for the variance of G(X) under the
new measure. Of course, the presence of the interacting particle approximation introduces
additional complexity at this point. Moreover, unlike the work of [25] which considered
a very restrictive class of SDEs (the geometric Brownian motion), here we deal with
a general class of MV-SDE where the drifts are of super-linear growth and satisfy a
monotonicity type condition. This is important in practice since many MV-SDEs fall
into this category, see the examples given in [2], [10]; our algorithms may be of use for
the simulation from the invariant distribution with a finite-time approximation [3] or in
simulating relevant quantities for mean-field games [9].

We then minimise the large deviations proxy to obtain a candidate optimal measure
change for the two approaches that we consider. We find that the decoupling approach
yields an easier optimisation problem than the complete measure change, which results
in a high dimensional problem. However, by using exchangeability arguments the latter
problem may be transformed into a far simpler two dimensional one. We implement both
algorithms for two examples coming from the Kuramoto model from statistical physics
and show that the variance of the importance sampling schemes is up to 3 orders of
magnitude smaller than that of the standard Monte Carlo. Moreover, the computational
cost only increases by a factor of 2 for the decoupling approach and is approximately
the same as standard Monte Carlo for the complete measure change. We also estimate
the propagation of chaos error and find that this is dominated by the statistical error by
one order of magnitude after variance reduction. That being said, although the complete
measure change appears to operate well in certain situations, it does rely on a change of
measure which is not too “large”. We come back to this point throughout.

Concerning the measure change paradigm, in this work we focus on deterministic (open
loop) measure changes as opposed to stochastic (feedback) measure changes. This is a
choice one faces when using importance sampling and there are advantages and disad-
vantages to both alternatives. As pointed out in [22], deterministic measure changes may
lead to poor results in terms of variance reduction, however, the increase in computa-
tional time of the IS algorithm compared to standard MC is overall negligible. Stochastic
measure changes as discussed in [17] give improved variance reduction in far greater gen-
erality, however, calculating the measure change is computationally burdensome, so the
overall computational gain is less clear. As this is the first paper to marry importance
sampling with MV-SDEs we start by analyzing deterministic measure changes and leave
stochastic measure changes to future research. We provide precise conditions under which
our deterministic measure change leads to an asymptotically optimal importance sam-
pling estimator in the class of measure changes stemming from Cameron-Martin densities
(deterministic). Further, the complete measure change algorithm requires a propagation
of chaos result to hold under the new measure (Proposition 3.1) and it is not clear how
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to prove such a result if one uses stochastic measure changes.

The manuscript is organized as follows. In Section 2 we gather the preliminary results.
In Section 3 we discuss how importance sampling and measure changes can be carried
out for MV-SDE, and in Section 4 we introduce our concept of optimality and identify
the candidate optimal measure changes using the theory of large deviations. Section 5
illustrates numerically our results while proofs from Section 4 are carried out in Section
6.

Acknowledgements The authors thank Daniel Lacker (Columbia University) and
Michael Röckner (Bielefeld University) for the helpful discussions. We would also like
to thank our referees and the associate editor whose comments led to several non-trivial
improvements to our manuscript.

2. Preliminaries

Throughout the paper we work on a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying
the usual conditions, where Ft is the augmented filtration of a standard multidimensional
Brownian motion W .

We will work with Rd, the d-dimensional Euclidean space of real numbers, and for
a = (a1, · · · , ad) ∈ Rd and b = (b1, · · · , bd) ∈ Rd we denote by |a|2 =

∑d
i=1 a

2
i the usual

Euclidean distance on Rd and by 〈a, b〉 =
∑d
i=1 aibi the usual scalar product. For a n× l-

dimensional matrix A ∈ Rn×l we denote by Aᵀ its transpose and its Frobenius norm by
|A| = Tr{AAᵀ}1/2.

We consider some finite terminal time T <∞ and use the following notation for spaces,
which are standard in the McKean-Vlasov literature (see [8]). We define Sp for p ≥ 1, as
the space of Rd-valued, F·-adapted processes Z, that satisfy, E[sup0≤t≤T |Zt|p]1/p < ∞.

Similarly, Lpt (Rd), defines the space of Rd-valued, Ft-measurable random variables X,
that satisfy, E[|X|p]1/p < ∞. We define L2

0(Rd) as the space of deterministic square-

integrable functions g : [0, T ] → Rd with norm ‖g‖2
L2

0
=
∫ T

0
|g(s)|2ds; C([0, T ],Rd) the

space of continuous functions from [0, T ] to Rd and C0([0, T ],Rd) its sub-space of maps
such that f(0) = 0.

Given the measurable space (Rd,B(Rd)), we denote by P(Rd) the set of probability
measures on this space, and write µ ∈ P2(Rd) if µ ∈ P(Rd) and for some x ∈ Rd,∫
Rd |x− y|

2µ(dy) <∞. For p ∈ {1, 2} we introduce following Wasserstein metrics on the

space P2(Rd) for µ, ν ∈ P2(Rd) (see [15]),

W (p)(µ, ν) = inf
π

{(∫
Rd×Rd

|x− y|pπ(dx,dy)

) 1
p

: π ∈ P(Rd × Rd) with marginals µ and ν

}
.

The symbol C is used throughout this work to denote a generic non-negative constant
independent of the relevant parameters and may take different values at each occurrence.
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2.1. McKean-Vlasov stochastic differential equations

Let W be an l-dimensional Brownian motion, take σ ∈ Rd×l and let b : [0, T ] × Rd ×
P2(Rd)→ Rd be a measurable map. In this paper we consider MV-SDEs written in the
form,

dXt = b(t,Xt, µt)dt+ σdWt, X0 = x0, (2.1)

where µt denotes the law of the process X at time t, i.e. µt = P ◦ X−1
t . Consider the

following assumption on the coefficients.

Assumption 2.1. Let σ ∈ Rd×l and assume that b is jointly continuous (in (t, x, µ))
and satisfies the following assumptions.

1. One-sided Lipschitz growth condition in x and Lipschitz in law: there exists L > 0
such that for all t ∈ [0, T ], all x, x′ ∈ Rd and all µ, µ′ ∈ P2(Rd) we have that

〈x−x′, b(t, x, µ)−b(t, x′, µ)〉 ≤ L|x−x′|2 and |b(t, x, µ)−b(t, x, µ′)| ≤ LW (2)(µ, µ′).

2. Locally Lipschitz with polynomial growth in x: there exists q ∈ N with q > 1 such
that for all t ∈ [0, T ], all µ ∈ P2(Rd) and all x, x′ ∈ Rd the following holds.

|b(t, x, µ)− b(t, x′, µ)| ≤ L(1 + |x|q + |x′|q)|x− x′|.

Under these assumptions, existence and uniqueness follows from the results given in
[15, Theorem 3.3].

Theorem 2.2 ([15]). Suppose that b and σ satisfy Assumption 2.1. Then there exists
a unique solution for X ∈ Sm([0, T ]) to the MV-SDE (2.1). For any m ≥ 2 there exists
a positive constant C such that

E
[

sup
t∈[0,T ]

|Xt|m
]
≤ C

(
|x0|m +

(∫ T

0

|b(t, 0, δ0)|dt
)m

+ |σ|m
)
eCT .

The interacting particle system approximation and propagation of chaos We
approximate the equation (2.1) using an N -dimensional system of interacting particles
Xi,N satisfying the SDE

dXi,N
t = b

(
t,Xi,N

t , µNt

)
dt+ σdW i

t , µNt (dx) :=
1

N

N∑
j=1

δXj,Nt
(dx), Xi,N

0 = x0, (2.2)

where δXj,Nt
is the Dirac measure at point Xj,N

t , and the Brownian motions {W i}i≥1

are independent from each other and from the BM W appearing in (2.1). The term
propagation of chaos refers to the convergence of the particle system to the original
MV-SDE. Different formulations of this property exist; a common one is the pathwise
convergence result where we consider the system of non interacting particles

dXi
t = b(t,Xi

t , µ
Xi

t )dt+ σdW i
t , Xi

0 = x0, (2.3)
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which are of course just MV-SDEs satisfying µX
i

t = µXt for all i. Under sufficient con-
ditions, one can then prove the following convergence result (see [8]*Theorem 1.10 for
example).

lim
N→∞

sup
1≤i≤N

E
[

sup
0≤t≤T

|Xi,N
t −Xi

t |2
]

= 0 .

2.2. Large Deviation Principles

In this section, we state the main results from the large deviations theory that we use
throughout the paper. For a full exposition the reader can consult texts such as [13] or [16].
The large deviation principle (LDP) characterizes the limiting behaviour in exponential
scale, as ε → 0, of a family of probability measures {µε}, defined on the space (X ,BX ),
where X a topological space so that open and closed subsets of X are well-defined, and
BX is the Borel σ-algebra on X . The limiting behaviour is defined via a so-called rate
function. We assume that the probability spaces have been completed, consequently, BX
is a complete Borel σ-algebra on X . We have the following definition [13, pg.4].

Definition 2.3 (Rate function). A rate function I is a lower semicontinuous mapping
I : X → [0,∞] (i.e. for all α ∈ [0,∞), the sub-level set ΨI(α) := {x : I(x) ≤ α} is a
closed subset of X ). A good rate function is a rate function for which all the sub-level
sets ΨI(α) are compact subsets of X . The effective domain of I, denoted DI , is the set
of points in X of finite rate, namely, DI := {x : I(x) <∞}.

We use the standard notation: for any set Γ, Γ denotes the closure and Γo denotes the
interior of Γ. As is standard practice in LDP theory, the infimum of a function over an
empty set is interpreted as ∞. We then define what it means for a sequence of measures
to have an LDP [13]*pg.5.

Definition 2.4. A family of probability measures, {µε} with ε > 0 satisfies the large
deviation principle with a rate function I if, for all Γ ∈ BX ,

− inf
x∈Γo

I(x) ≤ lim inf
ε→0

ε logµε(Γ) ≤ lim sup
ε→0

ε logµε(Γ) ≤ − inf
x∈Γ

I(x) . (2.4)

It is also typical to have LDP defined in terms of a sequence of random variables Zε,
in which case one replaces µε(Γ) by P[Zε ∈ Γ]. The LDP for Brownian motion in path
space is given by the celebrated Schilder’s theorem, which states that for a d-dimensional
Brownian motion W , the family (

√
εW )ε>0 satisfies an LDP with the good rate function

(see [13])

I(y) =

{
1
2

∫ T
0
|ẏt|2dt , if y ∈ HdT ,

∞, otherwise,
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where HdT denotes the space of Rd-valued absolutely continuous functions with value 0
at 0 that possess a square integrable derivative.

The following result can be viewed as a generalisation of Laplace’s approximation of
integrals to the infinite dimensional setting and transfers the LDP from probabilities to
expectations (see [13]).

Lemma 2.5 (Varadhan’s Lemma). Let Zε be a family of random variables in X sat-
isfying a large deviation principle with good rate function I and let ϕ : X → R be a
continuous function such that the following integrability (moments) condition holds for
some γ > 1.

lim sup
ε→0

ε logE
[
exp

(γ
ε
ϕ(Zε)

)]
<∞ .

Then,

lim
ε→0

ε logE
[
exp

(
1

ε
ϕ(Zε)

)]
= sup
x∈X

{
ϕ(x)− I(x)

}
.

As is discussed in [25] and in the subsequent sections, one needs a slight extension to
Varadhan’s lemma which allows the function ϕ to take the value −∞. The extension is
proved in [25].

Lemma 2.6. Let ϕ : X → [−∞,∞) and assume the conditions in Lemma 2.5 are
satisfied. Then the following bounds hold for any Γ ∈ BX

sup
x∈Γ0

{ϕ(x)− I(x)} ≤ lim inf
ε→0

ε log

(∫
Γo

exp

(
1

ε
ϕ(Zε)

)
dµε

)
≤ lim sup

ε→0
ε log

(∫
Γ

exp

(
1

ε
ϕ(Zε)

)
dµε

)
≤ sup

x∈Γ

{ϕ(x)− I(x)} .

Unlike Varadhan’s lemma, the previous lemma allows us to control the lim inf and
lim sup even when they are not equal.

2.3. Importance Sampling and large deviations

To motivate our approach we recall ideas from the pioneering works [21], [25] and [31],
which establish a connection between large deviations and importance sampling. Consider
the problem of estimating EP[G(X)] where X is a random variable/process. The standard
Monte Carlo estimator of this quantity using n samples writes,

θ̂n :=
1

n

n∑
i=1

G(X(i)),
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where X(i), i = 1, . . . , n are i.i.d. samples of X under P. Through Radon-Nikodym
theorem we can rewrite this expectation under a new measure Q weighted by the Radon-
Nikodym derivative, that is, EP[G(X)] = EQ[G(X) dP

dQ ]. Although the two expectations
are equal, the variance of the value under expectation under Q is,

VarQ

[
G(X)

dP
dQ

]
= EP

[
G(X)2 dP

dQ

]
− EP

[
G(X)

]2
. (2.5)

Thus, we may be able to choose Q, under which the importance sampling estimator
defined by

θ̂nQ :=
1

n

n∑
i=1

G(X
(i)
Q )

(
dP
dQ

)(i)

,

where X
(i)
Q are i.i.d. samples of X under Q and

(
dP
dQ

)(i)

are the corresponding samples of

the Radon-Nikodym density, will have a much smaller variance than the standard Monte
Carlo estimator θ̂n. As it turns out, if one can choose dQ

dP = G
EP[G] , then the variance

of θ̂nQ under Q reduces to zero, i.e. we have no error in our Monte Carlo simulation.
Unfortunately, in order to choose such a change of measure one would need to a priori
know the value of EP[G(X)] i.e. the value we wish to estimate in the first place.

Instead one typically chooses Q to minimise (2.5) over a set of equivalent probability
measures, chosen to add only a small amount of extra computation and such that the
process X is easy to simulate under the new measure. Specializing to the Brownian
filtration, a common choice of Q is the Girsanov transform, (1.2) where f is often taken
to be a deterministic function.

For example in [32] the authors develop an importance sampling procedure in the
context of Gaussian random vectors through a so-called “tilting” parameter, which cor-
responds to shifting the mean of the Gaussian random vector via a Girsanov transform.
Although this method is intuitive, it still requires estimation of the Jacobian of G w.r.t.
the tilting parameter and applying Newton’s method to select the optimal parameter
value. These steps can be computationally expensive, and it is difficult to obtain rigorous
optimality results.

Even after one has reduced the set of measures Q to optimise over, in general the
problem of minimizing (2.5) will not have a closed form solution. To simplify the problem
further, one can instead minimize a proxy for the variance obtained through Varadhan’s
lemma in the so-called small noise asymptotic regime as discussed in [21] and [25].

Assuming that a Girsanov change of measure is used and G is non-negative (or
bounded from below such that by the addition of a constant one can re-cast it as a
non-negative function), we want to minimise

EP

[
G(W )2 dP

dQ

]
= EP

[
exp

(
2F (W )−

∫ T

0

ftdWt +
1

2

∫ T

0

f2
t dt

)]
, (2.6)

where F = log(G). Recall that the extension to Varadhan’s lemma we present allows
for G = 0. Typically G is defined as a functional of the SDE, but here with a slight
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abuse of notation we have redefined it as the functional of the driving Brownian motion.
It is important for this type of argument that we are able to write the solution of the
SDE in terms of BM as well, i.e. we can write Xt = H(t,W·). Finding the optimal f
by minimizing (2.6) is in general intractable, hence an asymptotic approximation of the
variance should be constructed. To this end, let us consider,

ε logEP

[
exp

(
1

ε

(
2F (
√
εW )−

∫ T

0

√
εftdWt +

1

2

∫ T

0

f2
t dt

))]
,

which equals log of (2.6) when ε = 1. The small noise asymptotic approximation is then,

L(f) := lim sup
ε→0

ε logEP

[
exp

(
1

ε

(
2F (
√
εW )−

∫ T

0

√
εftdWt +

1

2

∫ T

0

f2
t dt

))]
.

One then computes a candidate variance reduction parameter f∗ by minimizing L(f),

which can be thought of as approximating EP

[
G(W )2 dP

dQ

]
by exp(L(f)). Crucially, L is

in a form that can be evaluated using the Varadhan’s lemma, i.e., we can change L into
a supremum depending on the rate function. The parameter f∗, which minimises L over
some predefined space is known as asymptotically optimal, see [25]. We will give a precise
definition of this concept later. It is important to note that these approximations are
not approximations for the original problem (calculate EP[G(X)]), they are only used to
choose the candidate measure change for variance reduction.

3. Importance sampling for MV-SDEs

Leaving LDPs and the optimality of the IS (importance sampling) on the side for a
moment, let us discuss how IS can be implemented for MV-SDEs with a given measure
change. Recall that MV-SDEs take the form (2.1). To make explicit the dependence
of the law of the solution on the measure, we write µXt,P = P ◦ X−1

t , and we add the

corresponding superscript to the Brownian motions, writing W P instead of W and W i,P

instead of W i.
For the change of measure, one considers a Girsanov transform where the allowed

functions are from the Cameron-Martin space of absolutely continuous functions with
square integrable derivative, i.e.,

HdT =

{
h : [0, T ] 7→ Rd : h0 = 0 , h· =

∫ ·
0

ḣtdt ,

∫ T

0

|ḣt|2 dt <∞

}
.

If d = 1 we just write HT = H1
T . For any h ∈ HdT , we define an equilvalent probability

measure Q as follows.

dQ
dP

∣∣∣
FT

= E
(∫ ·

0

〈ḣt,dW P
t 〉
)
T

= exp
(∫ T

0

〈ḣt,dW P
t 〉 −

1

2

∫ T

0

|ḣt|2 dt
)
. (3.1)
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IS for MV-SDEs 11

Under this new measure Q, the process WQ
· = W P

· − h· is a standard d-dimensional Q-
Brownian motion. We note that the Radon-Nikodym density dQ

dP |Ft = E(
∫ ·

0
〈ḣs,dW P

s 〉)t =:
Et is itself the solution of the SDE

dEt = 〈ḣt, EtdW P
t 〉, E0 = 1 ⇒ Et = exp

{∫ t

0

〈ḣs,dW P
s 〉 −

1

2

∫ t

0

|ḣs|2ds
}
. (3.2)

Since P and Q are equivalent, one can also define Zt := E−1
t := dP

dQ |Ft . With our conditions

on ḣ it is also a straightforward task to show Et and Zt are in Sp for all p ≥ 1.
Recall our goal: estimate EP[G(X)] = EQ[G(X) dP

dQ ] for a given pay-off functional G by
simulating X under Q. In the following paragraphs we present two alternative approaches
to achieve this goal. Both approaches are based on interacting particle systems, hence a
propagation of chaos (PoC) result and a converging discretization scheme are required to
justify the convergence of the Monte Carlo estimators. For the first approach (decoupling)
such results are available in the literature, see e.g. [14] for a PoC and a Euler scheme (with
rates) for super-linear growth MV-SDEs under conditions more general than Assumption
(2.1). On the other hand, our second algorithm (full measure change) requires a PoC and
a discretization scheme after the measure change. The former is a non-standard result
and hence we provide one; the latter is more straightforward and can be adapted from
the constructions in e.g. [14] so that we do not discuss it further.

3.1. A decoupling argument: fixing the empirical law

An obvious way to solve the problem of IS is to approximate the law of the MV-SDE
under P and use that as a fixed input to a new equation which will be simulated under
Q. In this set-up the McKean-Vlasov SDE becomes an SDE with random coefficients.
The algorithm is as follows.

1. Use (2.2) with N particles to approximate (2.1) under P. Use a numerical scheme
(say Euler scheme as in [14]) to simulate the particles, approximating the empirical
law µNt over [0, T ].
Define a new SDE, approximating the original MV-SDE (2.1), which is now a
standard SDE with random coefficients

dX̄t = b(t, X̄t, µ
N
t )dt+ σdW P

t , X̄0 = x0, (3.3)

where W P is a P-Brownian motion independent of the {W i,P}i=1,··· ,N appearing
in (2.2). SDEs with random coefficients appear typically in optimal control, hence
the reader can consult texts such as [33]*Chapter 1 for further details on existence
and uniqueness for such SDEs.

2. Simulate (3.3) under the importance sampling measure Q, i.e.,

dX̄t =
(
b(t, X̄t, µ

N
t ) + σḣt

)
dt+ σdWQ

t , X̄0 = x0 .

This second run is therefore standard importance sampling, but the SDE has ran-
dom coefficients i.e. the empirical law is random.
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12 G. dos Reis et al.

We will refer to algorithms of this form as Decoupling Algorithms. This scheme has
the disadvantage that it requires an estimate of the error coming from the original ap-
proximation of the law and also that it requires more simulations; naively one can say
twice the amount, but in effect the second simulation does not necessarily need to have
the same sample size as the first one (we do not explore optimality in regard to this
issue). Lastly, it is not a requirement to use interacting particles to approximate the law
of the SDE, any approximation will work (quantization [23], Fokker-Plank methods [1],
Cubature [11], Fourier techniques, to mention some). The goal here is to make the SDEs
independent.

3.2. Complete Measure Change

An alternative is to change the measure under which we are simulating in the coefficients
and the Brownian motion. This is not a simple problem and as far as we are aware
changing the measure of a MV-SDE and its particle approximation is not discussed
elsewhere in the literature for this purpose1, we therefore provide a discussion along with
the pitfalls here.

The scalar interaction case. Later in this section we present the complete measure
change algorithm in the general setting of (2.1). However, this algorithm is more complex
than the decoupled one and hence we choose to illustrate our ideas in a simplified setting
first and return to the general case afterward. Consider the following MV-SDE.

dXt = b̂
(
t,Xt,EP[f(Xt)]

)
dt+ σdW P

t , X0 = x0 , t ∈ [0, T ] . (3.4)

where σ ∈ Rd×l and assumptions on f and b̂ will be specified later. The measure changed
version of (3.4) takes the following form, where again Z := E−1.

dXt =
(
b̂(t,Xt,EP[f(Xt)]) + σḣt

)
dt+ σdWQ

t

=
(
b̂(t,Xt,EQ

[
f(Xt)Zt

]
) + σḣt

)
dt+ σdWQ

t .

In view of simulation, we re-write the measure changed MV-SDE from (3.2) and (3.4) as
a system

dXt =
(
b̂
(
t,Xt,EQ

[
f(Xt)Zt

])
+ σḣt

)
dt+ σdWQ

t , and dZt = −ZtḣtdWQ
t .

Note that although the couple (X,Z) is still a MV-SDE in dimension 2d, its coefficients
may no longer be Lipschitz in the measure argument, whence the difficulty of proving a
propagation of chaos result under the new measure.

We now write the interacting particle system for the pair X,Z under Q. For tech-
nical reasons which will become clear below, we replace b̂(t, x, y) with b̂K(t, x, y) :=

1Measures changes for MV-SDE appear in methods requiring to remove the drift altogether, for
instance in establishing weak solutions to MV-SDEs, see e.g. [12].
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b(t, x,ΠK(y)) where ΠK is the projection operator onto the d-dimensional ball centered
at the origin and with a radius K = 1 + ‖EP[f(X·)]‖∞.
The particle system takes the following form.

dXi,N
t =

(
b̂K
(
t,Xi,N

t ,
1

N

N∑
j=1

f(Xj,N
t )Zj,Nt

)
+ σḣt

)
dt+ σdW i,Q

t , Xi,N
0 = x0 , (3.5)

dZi,Nt = −〈ḣt, Zi,NdW i,Q
t 〉, Zi,N0 = 1 . (3.6)

The importance sampling estimator of θ = EP[G(X)] then takes the form

θ̂h =
1

N

N∑
i=1

Zi,NT G(Xi,N ). (3.7)

Remark 3.1. One may be tempted to write the interacting particle approximation
under P,

dXi,N
t = b̂K

(
t,Xi,N

t ,
1

N

N∑
j=1

f(Xj,N
t )

)
dt+ σdW i,P

t ,

and then change the measure for the particle system, writing

dXi,N
t =

(
b̂K
(
t,Xi,N

t ,
1

N

N∑
j=1

f(Xj,N
t )

)
+ σḣt

)
dt+ σdW i,Q

t ,

where we have taken the same ḣ for every Brownian motion in order for all particles to
have the same law. However, it is easy to see by the standard propagation of chaos result
that as N →∞, this particle system converges to the solution of the MV-SDE

dXt =
(
b̂K
(
t,Xt,EQ[f(Xt)]

)
+ σḣt

)
dt+ σdWQ

t = b̂K
(
t,Xt,EQ[f(Xt)]

)
dt+ σdW P

t ,

which is not what one is looking for.

3.2.1. The Propagation of chaos result for scalar interactions

To state a propagation of chaos result for the particle system (3.5) we introduce the
auxiliary system of non-interacting particles, (in fact (3.6) above and (3.9) below are the
same).

dXi
t =

(
b̂
(
t,Xi

t ,EQ
[
f(Xi

t)Z
i
t

])
+ σḣt

)
dt+ σdW i,Q

t , Xi
0 = x0 , (3.8)

dZit = −〈ḣt, ZitdW
i,Q
t 〉, Zi0 = 1 . (3.9)
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14 G. dos Reis et al.

Proposition 3.1. Let b̂ : [0, T ]×Rd×Rd → Rd be jointly continuous in its variables and

assume that x 7→ b̂(·, x, ·) satisfies the one-sided Lipschitz and local Lipschitz/polynomial

growth condition of Assumption 2.1 uniformly on the other variables, y 7→ b̂(·, ·, y) is
Lipschitz uniformly on the other variables, f : Rd 7→ Rd is Lipschitz; ḣ ∈ L2

0(Rl). Then
the system (3.8)–(3.9) has a unique strong solution. The same holds for equation (3.4).

Now, let b̂K(t, x, y) := b(t, x,ΠK(y)) where ΠK is the projection operator onto the
d-dimensional ball centered at the origin and with a radius K = 1+‖EP[f(X·)]‖∞. Then
for system (3.5)–(3.6) there exists a unique strong solution such that for any p ≥ 2 we

have supN≥1 sup1≤i≤N EQ[sup0≤t≤T |X
i,N
t |p] <∞.

Moreover, the following pathwise propagation of chaos result holds,

lim
N→∞

sup
1≤i≤N

EQ

[
sup

0≤t≤T
|Xi,N

t −Xi
t |2
]

= 0,

with a convergence rate O(1/
√
N).

This proposition may be used to analyze the convergence of the Monte Carlo estimator
(3.7). Indeed, due to the fact that there is no coupling (or law dependency) in Zi,N , we

have Zi,N = Zi and then θ̂h can be represented as follows

θ̂h =
1

N

N∑
i=1

ZiTG(Xi) +
1

N

N∑
i=1

ZiT
(
G(Xi,N )−G(Xi)

)
.

The first term above converges to θ as N → ∞ by the law of large numbers, and the
second term can be shown, e.g., to converge to zero in probability using Proposition 3.1
if G is sufficiently regular.

Proof of Proposition 3.1. The idea of the proof is to appeal to the standard Grönwall
type inequality, but this is made difficult due to the presence of Z term in (3.8).

Due to the assumptions on the coefficients we have the following, by Theorem 2.2, the
solution to (3.4) exists, is unique and all its p-moments exist for p ≥ 2 (i.e. belongs to
Sp(P) p ≥ 2). Via continuity and integrability of the solution of (3.4) and the properties
of f , the map [0, T ] 3 t 7→ EP[f(Xt)] is uniformly bounded, hence by uniqueness it is

obvious that replacing b̂ with b̂K in (3.4) does not change the solution. This, together
with the Girsanov theorem, ensures that the system (3.8)-(3.9) admits a unique strong
solution belonging to Sp(Q) for all p ≥ 2. We shall then move on to the study of Equation
(3.5).

Existence and uniqueness of the solution of (3.5) To show existence, consider the
modified system

dX
i,N

t =
(
b̂K
(
t,X

i,N

t ,
1

N

N∑
j=1

f(X
j,N

t )Z
j,N

t

)
+ σḣt

)
dt+ σdW i,Q

t , X
i,N

0 = x0 ,

dZ
i,N

t = −φM (Z
1,N

t , . . . , Z
N,N

t )〈ḣt, Z
i,N

t dW i,Q
t 〉, Z

i,N

0 = 1 ,
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where φM : RN → [0, 1] is a smooth compactly supported function such that φM = 1 on
[0, C]M . It is easy to see that this system satisfies the assumption of Theorem II.3.6 in [29]
and therefore admits a unique strong solution. This solution coincides with the solution of
the original system on [0, τM ], where τM = inf{t ≥ 0 : (Z1,N , . . . , ZN,N ) /∈ [0, C]M}. The
solution of the original system is thus also unique on this interval. Since Z1,N , . . . , ZN,N

are strictly positive and continuous, τM → ∞ a.s. as M → ∞, and a global solution of
the original system can be constructed by gluing together the solutions of the modified
system obtained with increasing values of M , and, similarly, uniqueness can be extended
to all t by iterating over M .

Moment bounds for the solution of (3.5) Critically, this would be much harder to

show for (3.5) using b̂ instead of b̂K , but the truncation allows us to obtain bounds on

moments of all orders of the solution that are uniform in N (note that y 7→ b̂K(·, ·, y) is
uniformly Lipschitz). To prove the uniform moment bound one relies on a much simpli-
fied version of the arguments used below to prove the PoC (see also the proof of Step 3
of Lemma 6.2). In rough, we apply Itô’s formula to |Xi,N |2 of (3.8), add and subtract

b̂K
(
·, 0, 1

N

∑N
j=1 f(Xj,N

· )Zj,N·
)

to the inner product, use the one-sided Lipschitz condi-

tion, the uniform boundedness of (t, y) 7→ b̂K(t, 0, y) and Young’s inequality. This leads
to the following estimate:

|Xi,N
t |2 ≤ C

∫ t

0

|Xi,N
s |2ds+ x2

0 + σ2t+ 2

∫ t

0

〈Xi,N
s , σdWs〉,

for some C < ∞. Now raising both sides to the power p/2, taking Q-expectation and
applying BDG inequality to the stochastic integral, we are in position to use Grönwall’s
inequality to obtain the uniform moment bounds.

Propagation of chaos Let t ∈ [0, T ], i = 1, · · · , N , then Itô’s lemma yields,

|Xi,N
t −Xi

t |2 (3.10)

= 2

∫ t

0

〈
Xi,N
s −Xi

s, b̂K
(
s,Xi,N

s ,
1

N

N∑
j=1

f(Xj,N
s )Zjs

)
− b̂K

(
s,Xi

s,EQ[f(Xi
s)Z

i
s]
)〉

ds ,

where we used that b̂
(
·, ·,EQ[f(Xi

· )Z
i
· ]
)

= b̂K
(
·, ·,EQ[f(Xi

· )Z
i
· ]
)
.

Let s ∈ [0, T ] and introduce in 〈, 〉 the terms, b̂K
(
s,Xi

s,
1
N

∑N
j=1 f(Xj,N

s )Zjs
)

and

b̂K
(
s,Xi

s,
1
N

∑N
j=1 f(Xj

s )Zjs
)
, where the empirical measure in the second term is the one

constructed from the i.i.d. SDEs in (3.8), hence each Xj corresponds to an independent
realization of the MV-SDE. Splitting the integrand in (3.10) in three parts and using
Cauchy-Schwarz and Young’s inequality together with the conditions on f and b we
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16 G. dos Reis et al.

obtain〈
Xi,N
s −Xi

s, b̂K
(
s,Xi,N

s ,
1

N

N∑
j=1

f(Xj,N
s )Zjs

)
− b̂K

(
s,Xi

s,
1

N

N∑
j=1

f(Xj,N
s )Zjs

)〉
≤ C|Xi,N

s −Xi
s|2,

〈
Xi,N
s −Xi

s, b̂K
(
s,Xi

s,
1

N

N∑
j=1

f(Xj
s )Zjs

)
− b̂K

(
s,Xi

s,EQ[f(Xi
s)Z

i
s]
)〉

≤ C|Xi,N
s −Xi

s|2 + C| 1

N

N∑
j=1

f(Xj
s )Zjs − EQ[f(Xi

s)Z
i
s]|2,

and 〈
Xi,N
s −Xi

s, b̂K
(
s,Xi

s,
1

N

N∑
j=1

f(Xj,N
s )Zjs

)
− b̂K

(
s,Xi

s,
1

N

N∑
j=1

f(Xj
s )Zjs

)〉

≤ C

N
|Xi,N

s −Xi
s|

N∑
j=1

|Xj,N
s −Xj

s |Zjs .

Plugging all these together we obtain the following bound

EQ

[
sup

0≤t≤T
|Xi,N

t −Xi
t |2
]
≤C

∫ T

0

EQ[|Xi,N
s −Xi

s|2] + EQ

[
|Xi,N

s −Xi
s|

1

N

N∑
j=1

|Xj,N
s −Xj

s |Zjs
]

+ EQ

[∣∣ 1

N

N∑
j=1

f(Xj
s )Zjs − EQ[f(Xi

s)Z
i
s]
∣∣2]ds .

Concentrating on the second term of the three and using Young’s inequality we have

EQ

[
|Xi,N

s −Xi
s|

1

N

N∑
j=1

|Xj,N
s −Xj

s |Zjs
]

≤ 1

2
EQ

[
|Xi,N

s −Xi
s|2

1

N

N∑
j=1

(
Zjs
)2]

+
1

2
EQ

[ 1

N

N∑
j=1

|Xj,N
s −Xj

s |2
]
,

=
1

2
EQ

[
|Xi,N

s −Xi
s|2

1

N

N∑
j=1

(
Zjs
)2]

+
1

2
EQ

[
|Xi,N

s −Xi
s|2
]
,

since all particles are identically distributed. Recalling that for a product of random
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variables X, Y one has E[XY ] = E[X]E[Y ] + Cov(X,Y ),

EQ

[
|Xi,N

s −Xi
s|2

1

N

N∑
j=1

(
Zjs
)2]

= EQ

[
|Xi,N

s −Xi
s|2
]
EQ

[ 1

N

N∑
j=1

(
Zjs
)2]

+ CovQ

(
|Xi,N

s −Xi
s|2,

1

N

N∑
j=1

(
Zjs
)2)

.

Using the integrability of Z we can bound the second factor in the 1st term by a constant.
Further, using that the Zi’s are i.i.d., the definition of covariance and applying Cauchy-
Schwarz inequality, we obtain,∣∣∣CovQ

(
|Xi,N

s −Xi
s|2,

1

N

N∑
j=1

(
Zjs
)2)∣∣∣ ≤ VarQ

(
|Xi,N

s −Xi
s|2
)1/2

VarQ

( 1

N

N∑
j=1

(
Zjs
)2)1/2

= VarQ

(
|Xi,N

s −Xi
s|2
)1/2 1√

N
VarQ

((
Zis
)2)1/2

≤ C√
N

where we used the fact that the fourth moment of Xi is bounded and fourth moment of
Xi,N is bounded uniformly on N (as shown at the beginning of the proof).

Combining this with our previous bounds yields,

EQ

[
sup

0≤t≤T
|Xi,N

t −Xi
t |2
]

≤ C
∫ T

0

EQ[|Xi,N
s −Xi

s|2] +N−1/2 + EQ

[∣∣ 1

N

N∑
j=1

f(Xj
s )Zjs − EQ[f(Xi

s)Z
i
s]
∣∣2]ds .

Finally, taking supremum over i, using Grönwall’s lemma, the fact that the Xj ’s and
Zj ’s are i.i.d. with bounded fourth moments, and that f is Lipschitz we obtain,

sup
1≤i≤N

EQ

[
sup

0≤t≤T
|Xi,N

t −Xi
t |2
]
≤ CeC

∫ T

0

1√
N

+ EQ

[∣∣ 1

N

N∑
j=1

f(Xj
s )Zjs − EQ[f(Xi

s)Z
i
s]
∣∣2]ds

≤ C√
N

∫ T

0

1 + EQ

[∣∣f(X1
s )Z1

s − EQ[f(X1
s )Z1

s ]
∣∣2]ds → 0,

where in the last inequality we use CLT and take N →∞, which concludes the proof.

Remark 3.2 (More general σ - time-space dependency). A careful inspection of our
computations shows that when h is deterministic, the above arguments along with stan-
dard ones for a non measure-changed propagation of chaos proof (e.g. [14]*Proposition
3.1) allow one to extend this result to the case when σ is Lipschitz in space (and time-
dependent). It is not clear how to prove a propagation of chaos result when σ also depends
on the measure.
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3.2.2. A second PoC with general measure dependency

In this section we prove another propagation of chaos result under the measure change.
The scope of this result is a tradeoff between the generality of the measure depen-
dence and the structural assumption of Proposition 3.1. We assume that b is uniformly
bounded and that µ 7→ b(·, ·, µ) is W (1)-Lipschitz (note that W (1)-Lipschitz implies W (2)-
Lipschitz). Many aspects of the proof below are close to the proof of Proposition 3.1.
The measure changed version of (2.1) takes the form,

dXt =
(
b(t,Xt, µ

X
t,P) + σḣt

)
dt+ σdWQ

t , µXt,P(·) =

∫
R
zµ

(X,Z)
t,Q (·,dz), (3.11)

where Z is defined by (3.2), and µ
(X,Z)
t,Q = Q ◦ (Xt, Zt)

−1. As before we replace b(t, x, µ)
with bK(t, x, µ) := ΠK(b(t, x, µ)) where ΠK is the projection operator onto the d-
dimensional ball centered at the origin and with a radius K = ‖b‖∞.

Given the uniqueness of the solution to (2.1), it is clear that (3.11) has the same solu-
tion with either b or with [0, T ]×Rd ×P2(Rd) 3 (t, x, µ) 7→ bK(t, x, µ) := ΠK(b(t, x, µ));
observe that ΠK is a projection operator and hence has bounded norm (and is Lipschitz
in Euclidean distance).

As above, we introduce the interacting particle system (Xi,N , Zi)i=1,...,N with Zi given
by (3.9) and Xi,N defined as follows

dXi,N
t =

(
bK
(
t,Xi,N

t , µ̂X,Nt

)
+ σḣt

)
dt+ σdW i,Q

t , with µ̂X,Nt (dx) =
1

N

N∑
j=1

Zjt δXj,Nt
(dx).

(3.12)

In the non-interacting particle system (Xi, Zi)i=1,...,N , Zi is once again defined by (3.9)
and the dynamics of Xi is as follows (compare with (3.11)), again using b or bK as drift
function leads to the same result,

dXi
t =

(
bK

(
t,Xi

t ,

∫
Rd
zµ

(X,Z)
t,Q (·,dz)

)
+ σḣt

)
dt+ σdW i,Q

t , (3.13)

where the joint law µ
(Xi,Zi)
t,Q = Q ◦ (Xi

t , Z
i
t)
−1 coincides with Q ◦ (Xt, Zt)

−1 = µ
(X,Z)
t,Q

since the variables (Xi, Zi)’s are i.i.d.

Theorem 3.2. Let Assumption 2.1 hold. Additionally assume that ‖b‖∞ < ∞ (b is
uniformly bounded); that µ 7→ b(·, ·, µ) satisfies a Lipschitz condition also in the W (1)-
metric (uniformly wrt t, x); and there exists some L > 0 such that for any t, x, y and any
finite positive measure2 ϑ on Rd we have

|b(t, x, ϑ)− b(t, y, ϑ)| ≤ L|x− y|
(
1 + ϑ(Rd)

)
. (3.14)

2A measure ϑ is said to be positive if for any non-negative f , one has
∫
fdϑ ≥ 0.
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Let Xi,N denote the particle system (3.12) approximating Xi
t defined in (3.13) (Zi defined

by (3.9)).
Then the conclusion of Proposition 3.1 holds for these processes, i.e., the system (3.12),

(3.6) has a unique strong solution satisfying supN≥1 sup1≤i≤N EQ[sup0≤t≤T |X
i,N
t |p] <∞

for any p ≥ 2.
Moreover, the following pathwise propagation of chaos result holds,

lim
N→∞

sup
1≤i≤N

EQ

[
sup

0≤t≤T
|Xi,N

t −Xi
t |2
]

= 0,

with a convergence rate O(1/
√
N) for d < 4, O((logN)/

√
N) for d = 4 and O(N−2/d)

if d > 4.

We point out that the convergence rate at higher dimensions is not optimal.

Remark 3.3 (On the assumptions). It is the uniform boundedness of b, enforced via
bK , that yields the boundedness of the moments of the particle system uniformly in the
number of particles. As in the proof of Proposition 3.1 this uniform boundedness of the
moments is crucial in showing the propagation of chaos. Additionally, and for this general
measure dependency, since the boundedness of b needs to enforced via bK the one-sided
Lipschitz structure is lost. Remark 3.4 addresses SDEs with drifts that are a combination
of Proposition 3.1 and Theorem 3.2.

The assumptions cover the linear interaction case i.e. b(t, x, µ) =
∫
Rd b̂(t, x, y)µ(dy) for

some uniformly bounded Lipschitz function b̂ (see Section 5 for a particular example); and
also the convolution case, i.e. b(t, x, µ) =

∫
Rd b̃(x− y)µ(dy) for some uniformly bounded

Lipschitz function b̃. If one has this example in mind, then condition (3.14) becomes
more obvious. When µ is a probability measure then (3.14) is just a standard Lipschitz
assumption, but during the proof, µ is replaced by the random empirical distribution
µ̂X,N in (3.12), which due to its weights (Zi)i makes the analysis more involved.

Proof. Let t ∈ [0, T ], i = 1, · · · , N . We introduce the empirical law ν
(X,Z),N
t to approx-

imate µ
(X,Z)
t,Q .

Since the variables (Xi, Zi) are i.i.d., we know (see [9]*Theorem 5.8) that the following
convergence holds in W (2)-metric,

ν
(X,Z),N
t (dx,dz) :=

1

N

N∑
j=1

δXjt
(dx)δZjt

(dz)
N→∞−→ µ

(Xi,Zi)
t,Q (dx,dz) = µ

(X,Z)
t,Q (dx,dz).

Existence, uniqueness and moment bounds. These results are straightforward
in view of the arguments already used in the proof of Proposition 3.1; the localization
argument over the Zi’s is crucial to make (3.14) a true Lipschitz condition (with ϑ
replaced by µ̂X,N ). The finite moment bounds argument (uniform in the particles) is as
in the proof of Proposition 3.1 once one observes that |bK | ≤ ‖b‖∞ by construction.
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The Propagation of Chaos. As in the proof of Proposition 3.1, Itô formula yields

|Xi,N
t −Xi

t |2 = 2

∫ t

0

〈
Xi,N
s −Xi

s, b
(
s,Xi,N

s , µ̂X,Ns

)
− b
(
s,Xi

s,

∫
R
zµ

(X,Z)
s,Q (·,dz)

)〉
ds .

(3.15)

We proceed as in the previous proof and add and subtract in 〈, 〉 the terms b(s,Xi
s, µ̂

X,N
s )

and b(s,Xi
s,
∫
R zν

(X,Z),N
s (·,dz)). For the 1st term we use (3.14) and that µ̂X,Ns is a positive

measure, while for the second one we use the W (1)-Lipschitz property〈
Xi,N
s −Xi

s, b
(
s,Xi,N

s , µ̂X,Ns

)
− b
(
s,Xi

s, µ̂
X,N
s

)〉
≤ C|Xi,N

s −Xi
s| × |Xi,N

s −Xi
s| × (1 + µ̂X,Ns (Rd))

≤ C|Xi,N
s −Xi

s|2 + C|Xi,N
s −Xi

s|2×
1

N

N∑
j=1

Zjs

and 〈
Xi,N
s −Xi

s, b
(
s,Xi

s, µ̂
X,N
s

)
− b
(
s,Xi

s,

∫
R
zν(X,Z),N
s (·,dz)

)〉
≤ C|Xi,N

s −Xi
s| ×W (1)

(∫
R
zµ(X,Z),N

s (·,dz),
∫
R
zν(X,Z),N
s (·,dz)

)
≤ C|Xi,N

s −Xi
s|

1

N

N∑
j=1

|Xj,N
s −Xj

s |(Zjs)2,

≤ C|Xi,N
s −Xi

s|2
1

N

N∑
j=1

(Zjs)4 + C
1

N

N∑
j=1

|Xj,N
s −Xj

s |2,

where for in the last two lines we dominated the Wasserstein distance by the moment
difference and used ab ≤ a2 + b2. For the last difference, we have the following estimate.〈

Xi,N
s −Xi

s, b
(
s,Xi

s,

∫
R
zν(X,Z),N
s (·,dz)

)
− b
(
s,Xi

s,

∫
R
zµ

(X,Z)
s,Q (·,dz)

)〉
≤ C|Xi,N

s −Xi
s|2 + CW (2)

(∫
R
zν(X,Z),N
s (·,dz),

∫
R
zµ

(X,Z)
s,Q (·,dz)

)2

.

Then following the steps of the preceding proof: joining all the estimates, taking supt,

EQ[·], dealing with the integrand terms as before where one now sees a term VarQ
(

1
N

∑N
j=1 Z

j
s

)
and a term VarQ

(
1
N

∑N
j=1

(
Zjs
)4)

appearing instead of the term VarQ
(

1
N

∑N
j=1

(
Zjs
)2)

,
taking supremum over i and using Grönwall’s lemma, we have

sup
1≤i≤N

EQ

[
sup

0≤t≤T
|Xi,N

t −Xi
t |2
]

≤ CeC
∫ T

0

1√
N

+ EQ

[
W (2)

(∫
R
zν(X,Z),N
s (·,dz),

∫
R
zµ

(X,Z)
s,Q (·,dz)

)2]
ds

N→∞−→ 0,
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where we use the [9]*Theorem 5.8 for the convergence of the W (2)-distance since Xi, Zi ∈
Sp for all p ≥ 2. That results yields a dimension dependent convergence rate O(1/

√
N)

for d < 4, O((logN)/
√
N) for d = 4 and O(N−2/d) if d > 4.

Remark 3.4 (Combining Proposition 3.1 and Theorem 3.2). By inspection of the
proofs of Proposition 3.1 and Theorem 3.2 one can see that both settings can be combined
to address general MV-SDEs with drifts given by linear combinations of the drifts in each
of the results, e.g. b(t, x, µ) = x− x3 +

∫
R sin(x− y)µ(dy).

3.2.3. The Complete Measure Change Algorithm

We now describe the algorithm for simulating a general MV-SDE under a complete
measure change.

1. Simulate the 2d-dimensional particle system for the MV-SDE after the measure
change:

dXi,N
t =

b
t,Xi,N

t ,
1

N

N∑
j=1

Zjt δXj,Nt

+ σḣt

dt+ σdW i,Q
t , Xi,N

0 = x0,

dZit = −〈ḣt, ZitdW
i,Q
t 〉, Zi0 = 1 .

2. Compute the importance sampling estimator using the following formula:

θ̂h =
1

N

N∑
i=1

Zi,NT G(Xi,N ).

We will refer to algorithms of this form as Complete Measure Change Algorithms. An
advantage one can immediately see is that one simulates the particles only once. A key
disadvantage is that the importance sampling to estimate the object of interest E[G(X)],
may yield a poorer estimation of the original law µ and the term EQ[f(Xt)Zt] in (3.8).
We will discuss this in Section 5.

4. Optimal Importance Sampling for McKean-Vlasov
SDEs

The previous section detailed algorithms for simulating MV-SDEs under an arbitrary
change of measure. We now use the theory of large deviations to determine, in a certain
optimal way, a measure change which will reduce the variance of the estimate.

An important point here is that we will be using the LDP for Brownian motion,
rather than that for MV-SDEs. There are several works dealing with Large Deviations
for MV-SDEs and their associated interacting particles systems, see [7], [19], [15] but
such results are not of use here since we must be able to cheaply simulate the MV-SDE
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after the change of measure. We restrict to Girsanov measure changes since we know how
the SDE changes under the measure change.

In this section we first show how the LDP framework can be applied to both algorithms
to yield a simplified optimisation problem for finding the asymptotically optimal measure
change (Theorems 4.5 and 4.6). In the last part we particularise our problem to the case
where the functional to evaluate only depends on the terminal value of the MV-SDE
(G(X) = G(XT )) and demonstrate how the resulting simplified optimization problems
can be solved in practice.

4.1. Preliminaries

We recall some of the main concepts for importance sampling with LDP, see [25] and
[21] for further discussion. We denote by Wd

T the standard d-dimensional Wiener space
of continuous functions over the time interval [0, T ] which are zero at time zero and in
the one-dimensional case we simply write WT instead of W1

T . This space is endowed
with the topology of uniform convergence and with the usual Wiener measure P, defined
on the completed filtration FT , which makes the process Wt(x) = xt with x ∈ Wd

T a
standard d-dimensional Brownian motion. The goal is to estimate the expected value
of some functional G̃ : Wd

T → R+ continuous in the uniform topology, which is defined
by the solution of the MV-SDE as functional of the Brownian trajectory (the precise
definition of G̃ will be given later). We consider MV-SDEs of the form (2.1), and make
the following assumptions.

Assumption 4.1. Let Assumption 2.1 hold with d = l. Assume that σ is non-degenerate
(strict positive or negative definite matrix).

In view of Section 2, this assumption guarantees the existence of a unique strong
solution to (2.1) with all moments. We further use the following assumption for the
terminal function G. Note that this assumption is on G as a function of the SDE, rather
than the driving Brownian motion as is the case in [25]. Also, by addition of a constant,
non-negativity of G is ensured as long as it is bounded from below.

Assumption 4.2. The functional G is non-negative, continuous with respect to the
sup norm and satisfies the following growth condition

G(x) ≤ C1 + C2 sup
t∈[0,T ]

|xt|p ,

for x : [0, T ] → Rd a continuous function starting at x0 where C1, C2 are positive
constants and p > 1.

The notion of “optimality” for the measure change used is the so-called asymptotic
optimality, as defined in3 [21]. From the approach of [21], we want to estimate E[G(X)] =

3A related but slightly weaker definition of optimality is used in [25].
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E[exp(log(G(X)))]. Here we perform a measure change for the Brownian motion, so for
ease of writing let us define F (W ) := log(G(X(W ))) with the natural convention that
F = −∞ when G = 0 and consider the more general problem of estimating,

α(ε) := E[exp(F (
√
εW )/ε)], for ε > 0.

When ε = 1, this is our original problem, and the limit of this expression as ε → 0 can
be computed using Varadhan’s lemma (this is referred to as small noise asymptotics).
We now consider a general estimator for this quantity α̂(ε) (there is no requirement for
α̂ to be based on a deterministic measure change). At this point we have no conditions
on these estimators so we follow definition [21]*Definition 2.1.

Definition 4.3. A family of estimators {α̂(ε)} is said to be asymptotically relatively
unbiased if the following holds,

E[α̂(ε)]− α(ε)

α(ε)
→ 0 as ε→ 0 .

The above definition yields estimators that in some sense converge, but we are inter-
ested in comparing such estimators and for this we look at their second moment.

Definition 4.4. A family of asymptotically relatively unbiased estimators {α̂0(ε)} is
said to be asymptotically optimal if,

lim sup
ε→0

ε logE[α̂0(ε)2] = inf
{α̂(ε)}

lim sup
ε→0

ε logE[α̂(ε)2],

where the infimum is over all asymptotically relatively unbiased estimators.

One of the goals of this section will be obtaining conditions when measure changes of
type (3.1) are asymptotically optimal. We shall use an argument similar to that given in
[21]*pg 126. Consider an asymptotically unbiased estimator α̂, and define the difference
∆(ε) := E[α̂(ε)]− α(ε). Jensen’s inequality then yields a lower bound for the estimator:

log(E[α̂(ε)2]) ≥ 2 log(E[α̂(ε)]) = 2 log
(
α(ε)

)
+O(∆(ε)/α(ε)).

Thus,
lim sup
ε→0

ε logE[α̂(ε)2] ≥ lim sup
ε→0

2ε log(α(ε)).

Since the degenerate estimator α̂(ε) = α(ε) is asymptotically optimal, the definition of
asymptotic optimality can be alternatively written as

lim sup
ε→0

ε logE[α̂0(ε)2] = lim sup
ε→0

2ε log(α(ε)).
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The right-hand side of this expression, which corresponds to the small-noise limit of the
original expectation E[G(X)] can be computed using Varadhan’s lemma and Schilder’s
theorem: if F is a continuous mapping satisfying the assumptions of Lemma 2.5 then

lim sup
ε→0

2ε log(α(ε)) = lim
ε→0

2ε logE
[
exp

(
1

ε
F (
√
εW )

)]
= 2 sup

u∈HdT

{
log(G(X(u)))−

∫ T

0

|u̇t|2dt
}
. (4.1)

4.2. The decoupling algorithm

We first consider the decoupling algorithm presented in Section 3.1. We build µNt from an
independent N -particle system which is simulated under a numerical scheme (as argued
in Section 3.1) and then consider the following approximation of SDE4 (2.1),

dXt = b(t,Xt, µ
N
t )dt+ σdWt, X0 = x0 . (4.2)

In order to distinguish the current SDE from the previous particle approximation we
introduce a so-called copy space (see for example [6]) (Ω̃, F̃ , (F̃t)t≥0, P̃), where (F̃t)t≥0

is a filtration satisfying the usual conditions and supporting a N -dimensional Brownian
motion. The N -dimensional system of SDEs used to approximate the measure µN is then
defined on this space, hence (4.2) is defined on the product space (Ω,F ,P)⊗ (Ω̃, F̃ , P̃).

Our aim is now to minimize over h ∈ HdT the variance conditional on the trajectory
of µN :

EP⊗P̃
[
G(X)2E−1

T

∣∣F̃T ], dEt = 〈ḣt, EtdW P
t 〉, E0 = 1,

and we make use of small noise asymptotics to define a tractable proxy for this variance,
written as,

L(h;µN ) := lim sup
ε→0

ε logEP⊗P̃ [ exp (
1

ε

(
2 log(G(

√
εW )) (4.3)

−
∫ T

0

√
ε〈ḣt,dWt〉+

1

2

∫ T

0

|ḣt|2dt
)

)
∣∣∣F̃T ] ,

where G(W ) := G(X(W )). One should keep in mind that G also depends on µN , however,
we suppress this notation for ease of presentation.

Remark 4.1. In (4.3), we have a conditional expectation, thus L(h;µN ) is technically
a random variable on Ω̃. Because this random variable is independent of the Brownian
motion and G is P̃-a.s. continuous w.r.t. the Brownian motion (Section 6.2), we can apply
Varadhan’s lemma to the conditional probability and obtain a P̃-almost sure result.

4The measure µN is a random measure but is independent of the process X thus we have decoupled
the SDE with random coefficients.
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Theorem 4.5. Let Assumptions 4.1 and 4.2 hold. Assume that for all m ≥ 2 we have
sup0≤t≤T EP⊗P̃[W (2)(µNt , δ0)m] <∞, that (t, x) 7→ b(t, x, µNt ) is P̃-a.s. jointly continuous

and fix ω̃ ∈ Ω̃ (and thus µN ). Furthermore assume that there exists u ∈ HdT such that
G(u) > 0. Then the following statements hold:

i. Let h ∈ HdT such that ḣ is of finite variation. Then Varadhan’s lemma holds for the
small noise asymptotics, namely we can rewrite (4.3) as,

L(h;µN ) = sup
u∈HdT

{
2 log(G(u)) +

1

2

∫ T

0

|ḣt − u̇t|2dt−
∫ T

0

|u̇t|2dt

}
P̃-a.s. .

(4.4)

ii. There exists an h∗ ∈ HdT which minimizes (4.4).
iii. Consider a simplified optimization problem

sup
u∈HdT

{
2 log(G(u))−

∫ T

0

|u̇t|2dt

}
. (4.5)

There exists a maximizer h∗∗ for this problem. If

L(h∗∗;µN ) = 2 log(G(h∗∗))−
∫ T

0

|ḣ∗∗t |2dt , (4.6)

then h∗∗ defines an asymptotically optimal measure change and is the unique maximizer
of (4.5).

All of these results are P̃-a.s. since the particle system yields a random measure from
Ω̃. The proof of this theorem requires several auxiliary results which we defer to Section
6.2. One should also note that the requirement for G > 0 for some u is not restrictive, it is
purely there for technical reasons since one cannot have a maximiser if log(G(u)) = −∞
for all u ∈ HdT . The assumption that ḣ has finite variation is necessary to establish the
continuity of the functional in Varadhan’s lemma.

Remark 4.2 (On µN ). Condition sup0≤t≤T EP⊗P̃[W (2)(µNt , δ0)m] < ∞ for all m ≥ 2
is not as restrictive as it may first appear. This condition holds under the one-sided
Lipschitz assumption is if one generates the empirical measure using a so-called taming
scheme (see [14]). It is then possible to show for any m ≥ 2,

sup
0≤t≤T

EP⊗P̃[W (2)(µNt , δ0)m] ≤ Cmmm <∞.

Remark 4.3 (Concavity of log(G) and asymptotic optimality). Consider the problem
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of minimizing (4.4) and assume that one can interchange the inf and the sup. Then,

inf
h∈HdT

L(h;µN ) = sup
u∈HdT

inf
h∈HdT

{
2 log(G(u)) +

1

2

∫ T

0

|ḣt − u̇t|2dt−
∫ T

0

|u̇t|2dt

}

= sup
u∈HdT

{
2 log(G(u))−

∫ T

0

|u̇t|2dt

}

because the inner problem is solved by choosing h = u. Therefore, a sufficient condition
for an asymptotically optimal measure change of type (3.1) is the exchangeability of inf
and sup above. Since L is a convex function in h, and the integral terms in (4.4) are
concave in u, a sufficient condition for such exchangeability is that log(G) is concave.
Indeed, in the case of convex-concave functionals we can invoke the minimax principle
to swap infimum and supremum, see [18]*pg. 175 for example.

In [25], the process X was a geometric Brownian Motion and the authors were able
to explicitly link the concavity of log(G) with the properties of the function G. Here the
dependence of G on the Brownian motion is more complex, and it appears to be difficult
to check concavity. Hence, in general one has to check numerically whether (4.6) holds.
However, even if (4.6) fails, one can still use h∗∗ to construct a candidate importance
sampling measure.

4.3. The complete measure change algorithm

Here we focus on the algorithm discussed in Section 3.2. Recall that we are interested in
evaluating, EP[G(X)]. We now change the measure to Q and calculate the variance,

VarQ

[
G(X)

dP
dQ

]
= EP

[
G(X)2 dP

dQ

]
− EP

[
G(X)

]2
.

Minimising the variance is equivalent to minimize the first term in the RHS. As a first step
to constructing a tractable proxy for this variance we consider a particle approximation
of X:

dXi,N
t = b

(
t,Xi,N

t ,
1

N

N∑
j=1

δXj,Nt

)
dt+ σdW i,P

t , Xi,N
0 = x0 , (4.7)

dE it = 〈ḣt, E itdW
i,P
t 〉, E i0 = 1,

where W i,P ∈Wd
T denotes the driving P-Brownian motion of particle i with i = 1, · · · , N ,

and all W i,Ps are independent of each other. We substitute EP[G2(X)(ET )−1] with the
minimization of

EP
[
G2(Xi,N )(E iT )−1

]
, over all h ∈ HdT . (4.8)
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In order to use the LDP theory to minimize (4.8), for all i ∈ {1, . . . , N}, we define
G̃i : (Wd

T )N → R by G̃i(W
1, . . . ,WN ) := G(Xi,N (W 1, . . . ,WN )). The small noise

asymptotics for the functional (4.8) takes the following form for any h ∈ HdT

L̄(h) := lim sup
ε→0

ε log

(
EP

[
exp

(
1

ε

(
2 log

(
G̃i
(√
εW 1, . . . ,

√
εWN

))
−
∫ T

0

√
ε〈ḣt,dW i

t 〉+
1

2

∫ T

0

|ḣt|2dt
))])

, (4.9)

where we remark that the value of this expression does not depend on the choice of i.
We then obtain the following result for L̄ (compare with Theorem 4.5).

Theorem 4.6. Fix N ∈ N and let Assumptions 4.1 and 4.2 hold. Assume that there
exists (u1, û) ∈ (HdT )2 such that G̃1(u1, û, . . . , û) > 0. Then the following statements hold

i. Let h ∈ HdT such that ḣ is of finite variation. Then Varadhan’s lemma holds for the
small noise asymptotics and we can rewrite (4.9) as

L̄(h) = sup
u∈(HdT )N

{ 2 log(G̃1(u1, . . . , uN )) (4.10)

+
1

2

∫ T

0

|ḣt − u̇1
t |2dt− 1

2

∫ T

0

|u̇1
t |2dt− 1

2

∫ T

0

|u̇t|2dt } ,

ii. There exists an h∗ ∈ HdT which minimizes (4.10).
iii. Consider a simplified optimization problem

sup
u1∈HdT ,û∈HdT

{
2 log(G̃1(u1, û, . . . , û))−

∫ T

0

|u̇1
t |2dt− N − 1

2

∫ T

0

| ˙̂ut|2dt

}
. (4.11)

There exists a maximizer (h∗∗, u∗∗) for this problem. If

L̄(h∗∗) = 2 log
(
G̃1(h∗∗, u∗∗, . . . , u∗∗)

)
−
∫ T

0

|ḣ∗∗t |2dt− N − 1

2

∫ T

0

|u̇∗∗t |2dt .

(4.12)

then h∗∗ is asymptotically optimal and is the unique maximizer of (4.11), where
we have taken i = 1 without loss of generality.

The proof of this theorem is deferred to Section 6.1. Similarly to the previous discussion
if log(G̃1) is a concave function in u ∈ (HdT )N , then we know that (4.12) holds (this is
discussed at the end of Section 6.1). However, in general (4.12) is difficult to check since,
even with h∗ fixed, L̄ is still an N -dimensional optimisation problem, since (4.10) is
supremum over u ∈ (HdT )N .

There is also a difficulty in quantifying how the measure change affects the propagation
of chaos error, i.e., a measure change that is good for the statistical error may be damaging
to the propagation of chaos error. We discuss this point further in Section 5.
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4.4. Computing the optimal measure change

In this section we consider the special case when G only depends on the terminal value of
X: G(X) = G(XT ). Our aim is to express the optimal measure change in a more explicit
form, solving the optimization problems of Theorems 4.5 and 4.6 using the methods
of deterministic optimal control (the reader can consult [20] or [33] for a background).
More specifically, we use Pontryagin’s maximum principle, which gives a set of differential
equations that the optimal control must satisfy. Let us recall the main ideas following
[33, p.102]. We start with the controlled dynamical system x(t) which takes the following
form:

ẋ(t) = b(t, x(t), u(t)), x(0) = x0 , (4.13)

where u is the control, defined in a metric space (U, d). The aim of the controller is to
minimize the cost functional

J
(
u(·)

)
=

∫ T

0

f
(
t, x(t), u(t)

)
dt+ h

(
x(T )

)
, (4.14)

f is typically referred to as the running cost and h the terminal cost. We make the
following assumption.

Assumption 4.7.

• (U, d) is a separable metric space and T > 0.
• The maps b : [0, T ] × Rn × U → Rn, f : [0, T ] × Rn × U → R and h : Rn → R

are measurable and there exists a constant L > 0 and a modulus of continuity
η : [0,∞)→ [0,∞) such that,

|b(t, x, u)− b(t, x̂, û)|+ |f(t, x, u)− f(t, x̂, û)|+ |h(x)− h(x̂)| ≤ L|x− x̂|+ η(d(u, û))

|b(t, 0, u)|+ |f(t, 0, u)| ≤ L

for all t ∈ [0, T ] x, x̂ ∈ Rn, u, û ∈ U .
• The maps b, f and h are C1 in x and there exists a modulus of continuity η :

[0,∞)→ [0,∞) such that,

|∂xb(t, x, u)− ∂xb(t, x̂, û)|+ |∂xf(t, x, u)− ∂xf(t, x̂, û)|
+ |∂xh(x)− ∂xh(x̂)| ≤ η

(
|x− x̂|+ d(u, û)

)
for all t ∈ [0, T ] x, x̂ ∈ Rn, u, û ∈ U .

As discussed in [33, p.102], Assumption 4.7 implies that (4.13) admits a unique solution
and (4.14) is well defined. Let us introduce the set of admissible controls U [0, T ] := {u(·) :
[0, T ] → U | u is measurable}. The optimal control problem is to find u∗ ∈ U [0, T ] that
satisfies,

J(u∗) = inf
u∈U [0,T ]

J(u) . (4.15)
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Such u∗ is referred to as an optimal control, and the corresponding x∗(·) := x(· ;u∗) as
an optimal state trajectory. We state the deterministic version of Pontryagin’s maximum
principle as in [33, p.103].

Theorem 4.8. [Pontryagin’s Maximum Principle] Let Assumption 4.7 hold and let
(x∗, u∗) be the optimal control-solution pair. Then, there exists a function p : [0, T ]→ Rn
satisfying the following,{

ṗ(t) = −∂xb(t, x∗(t), u∗(t))ᵀp(t) + ∂xf(t, x∗(t), u∗(t)), a.e. t ∈ [0, T ]

p(T ) = −∂xh(x∗(T )) ,
(4.16)

and

H(t, x∗(t), u∗(t), p(t)) = max
u∈U
{H(t, x∗(t), u, p(t))} a.e. t ∈ [0, T ] ,

where H(t, x, u, p) := 〈p, b(t, x, u)〉 − f(t, x, u) for any (t, x, u, p) ∈ [0, T ]×Rn × U ×Rn.

Typically p is referred to as the adjoint function and (4.16) the adjoint equation, and
the function H is called the Hamiltonian.

Remark 4.4 (An alternative approach). The maximum principle is not the only way
one can use to solve this problem. An alternative is by solving the so-called Hamilton-
Jacobi-Bellman (HJB) equation. This approach is typically more difficult since the HJB
is a partial differential equation.

Maximum principle for Theorems 4.5 and 4.6. The maximum principle allows
to translate the simplified optimization problems of Theorems 4.5 and 4.6 into boundary
value problems for ODE. One can observe that we are actually interested in u̇ rather
than u, that is, in the decoupled case we can write the controlled dynamics as

Xt(u̇) = x0 +

∫ t

0

b(s,Xs(u̇), µNs )ds+

∫ t

0

σu̇sds .

The theory above is for infimum while we are interested in supremum, therefore we use
the fact that sup{f} = − inf{−f}.
. For the decoupling algorithm Theorem 4.8 yields the following equations for the

optimization problem (4.5), which hold P̃-a.s., for the adjoint function and trajectory
under optimal control u̇∗ (for a given µN ),

(Decoupled)


ṗt = −∂xb(t,Xt(u̇

∗), µNt )ᵀpt , pT =
2

G(XT (u̇∗))
∂xG(XT (u̇∗)) ,

Ẋt = b(t,Xt, µ
N
t ) + 1

2σ


〈pt, σe1〉

...

〈pt, σed〉

 , X0 = x0 ,

(4.17)
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where ei denotes the d-dimensional vector with 1 at position i and zero elsewhere. One can
observe, the optimal control is related to p through, (u̇∗t )i = 1

2 〈pt, σei〉 for i ∈ {1, . . . , d}.
. For the complete measure change algorithm the argument is similar to the above

one, but here we also need to deal with the measure term; additionally in this case the
system is deterministic as opposed to above where it holds P̃-a.s. Noting that we have
two controls to optimise over (recall Theorem 4.6) we obtain more complex expressions.
Theorem 4.8 yields the following system of ODEs for the optimization problem (4.11).

ṗ1
t = −∂X1b(t,X1

t ,
1
N δX1

t
+ N−1

N δX̂t)p
1
t − ∂X1b(t, X̂t,

1
N δX1

t
+ N−1

N δX̂t)p
2
t , p1

T =
2∂xG(X1

T )

G(X1
T )

,

ṗ2
t = −∂X̂b(t,X1

t ,
1
N δX1

t
+ N−1

N δX̂t)p
1
t − ∂X̂b(t, X̂t,

1
N δX1

t
+ N−1

N δX̂t)p
2
t , p2

T = 0 ,

Ẋ1
t = b(t,X1

t ,
1
N δX1

t
+ N−1

N δX̂t) + 1
2σ


〈p1
t , σe1〉

...

〈p1
t , σed〉

 , X1
0 = x0 ,

˙̂
Xt = b(t, X̂t,

1
N δX1

t
+ N−1

N δX̂t) + 1
N−1σ


〈p2
t , σe1〉

...

〈p2
t , σed〉

 , X̂0 = x0 ,

(4.18)

similarly we obtain, (u̇∗t )i = 1
2 〈p

1
t , σei〉 and ( ˙̂u∗t )i = 1

N−1 〈p
2
t , σei〉 as the optimal controls

for i ∈ {1, . . . , d}. From Theorem 4.6 we obtain the measure change as ḣ = u̇.
The difference between (4.17) and (4.18) comes from the fact that for the complete

measure change we have a higher dimensional problem with two controls and two SDEs.
Recall, when one wishes to assess asymptotic optimality, (4.10) is still an N -dimensional
problem.

Remark 4.5 (Accuracy of Change of Measure). In [25], the authors were able to
obtain explicit solutions in certain situations, but here, due to the increased complexity,
we expect this to rarely be the case. This forces us to invoke a numerical method and
hence asymptotic optimality can never be guaranteed, however, provided we are close
(same error order as the numerical scheme) one can be reasonably confident that the
measure change is close to optimal.

5. Example: Kuramoto model

The Kuramoto model is a special case of a so-called system of coupled oscillators. Such
models are of particular interest in physics and are used to study many different phe-
nomena such as active rotator systems, charge density waves and complex biological
systems amongst other things, see [28] for further details. The SDE corresponding to the
Kuramoto model is

dXt =

(
K

∫
R

sin(y −Xt)µ
X
t,P(dy)− sin(Xt)

)
dt+ σdW P

t , t ∈ [0, T ], X0 = x0 ,
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where K is the coupling strength and σ has the physical interpretation of the tempera-
ture in the system. We consider a terminal condition G(x) = a exp(bx). Our goal is to
obtain an asymptotically optimal change of measure, which improves the estimation of
EP[G(XT )].

This model clearly satisfies Assumptions 4.1 as long as σ is nondegenerate with non-
negative entries. From a strict point of view, G does not satisfy Assumption 4.2 which
is for polynomial growth only (for any power). We apply our methodology nonetheless,
otherwise one could replace G by a high power polynomial.

Let us now apply the theory from the previous section to calculate the optimal change
of measure. We should point out here that we do not have the concavity required for
asymptotic optimality to hold automatically, therefore we need to check this condition
numerically.

By our previous discussion, to apply the decoupling algorithm here we generate a set
of N weakly interacting SDEs which we denote by Y i,N and approximate the original
SDE by,

dX̄t =

(
K

N

N∑
i=1

sin(Y i,Nt − X̄t)− sin(X̄t)

)
dt+ σdW P

t , t ∈ [0, T ], X̄0 = x0 .

Let us now apply the theory from the previous section to calculate the optimal change
of measure. Our optimal control argument implies solving P̃-a.s.

(Decoupled)

ṗt =
(
K
N

∑N
i=1 cos(Y i,Nt −Xt) + cos(Xt)

)
pt , pT = 2b ,

Ẋt =
(
K
N

∑N
i=1 sin(Y i,Nt −Xt)− sin(Xt)

)
+ 1

2σ
2pt , X0 = x0 .

The complete measure change algorithm yields the following system, (Complete)
ṗ1
t = K

(
N−1
N cos(X̂t −X1

t ) + cos(X1
t )
)
p1
t − K

N cos(X1
t − X̂t)p

2
t , p1

T = 2b ,

ṗ2
t = −K N−1

N cos(X̂t −X1
t )p1

t +K
(

1
N cos(X1

t − X̂t) + cos(X̂t)
)
p2
t , p2

T = 0 ,

Ẋ1
t = K

(
N−1
N sin(X̂t −X1

t )− sin(X1
t )
)

+ 1
2σ

2p1
t , X1

0 = x0 ,
˙̂
Xt = K

(
1
N sin(X1

t − X̂t)− sin(X̂t)
)

+ 1
N−1σ

2p2
t , X̂0 = x0 ,

To show the numerical advantages one can achieve by using importance sampling we
consider how the time taken and the estimate given by the algorithms change with the
number of particles N .

For this example we use, T = 1, X̄0 = 0, K = 1, σ = 0.3, a = 0.5 and b = 10. For the
numerics we use an Euler scheme with step size of ∆t = 0.02. The systems of equations
are solved using MATLAB’s bvp4c function, which uses a Lobatto IIIA method, see [30]
for example. For the importance sampling, we use the particle positions from the first
Monte Carlo simulation as the empirical law.

We recall that the decoupling importance sampling requires two runs, here we use
the same N for both of these. The first note one can make is how the time scales when
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Monte Carlo Decoupled Complete

N Payoff Error Time Payoff Error Time Payoff Error Time

1 × 103 1.5066 0.1490 3 1.5729 0.0028 9 1.5419 0.0024 3
5 × 103 1.5895 0.0626 27 1.5840 0.0013 54 1.5710 0.0013 28
1 × 104 1.6813 0.0693 76 1.5728 0.0009 153 1.5860 0.0009 75
5 × 104 1.5899 0.0200 1 025 1.5820 0.0004 2 052 1.5738 0.0004 1 062
1 × 105 1.5807 0.0176 3 433 1.5731 0.0003 6 935 1.5882 0.0003 3 644
Table 1. Results from standard Monte Carlo and the importance sampling algorithms. Time is

measured in seconds and error refers to square root of the variance.

increasing the number of particles, namely one can truly observe the N2 complexity5.
As expected the decoupling algorithm takes approximately twice as long as the standard
Monte Carlo (computing the change of measure is not time consuming). Following this
point we also observe that the complete measure change has roughly the same compu-
tational complexity as standard Monte Carlo. The other key point is the reduction in
variance (standard error) one obtains with importance sampling. For this example we see
that both importance sampling schemes reduce the variance by several orders of magni-
tude. Further, the decoupling algorithm’s efficiency in terms of computational costs can
be improved. The second run of simulations can be carried out with less samples than
the first run; we do not explore optimality in this regard.

Finally, we checked the asymptotic optimality (for the decoupling) numerically and
there is only a difference of O(10−4) between the two sides in (4.12). As this is the same
accuracy as the numerical solver we have used, we believe this solution is close to the
optimal one.
. Estimating the propagation of chaos error. As was mentioned in the introduction,

theoretically the statistical error and the propagation of chaos error converge to zero at
the same rate. We now use this example to show that the statistical error dominates.
Since the Euler scheme is the same in all examples we can neglect the bias caused by
that. We can then decompose the error as

1

N

N∑
i=1

G(X̄i,N )− EP[G(X̄1)]

=
1

N

N∑
i=1

G(X̄i,N )− EP[G(X̄1,N )] + EP[G(X̄1,N )]− EP[G(X̄1)] .

The first difference on the RHS is the statistical error, and the second one is the propaga-
tion of chaos error. It is then clear that if one considers M realisations of 1

N

∑N
i=1G(X̄i,N )

and takes the average, for M →∞ the resulting estimator converges to EP[G(X̄1,N )] and
the error reduces to the propagation of chaos error. To show the propagation of chaos

5For the particular case of the Kuramoto model, the trigonometric identity sin(y−x) = sin(y) cos(x)−
sin(x) cos(y) allows to decouple the measure dependency from the solution process and to simulate the
equation with a complexity of 1/N rather than the 1/N2 we have; this has been exploited in [2]. We
chose to present our results without this trick to highlight the generality in which our method applies.
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error is negligible compared to the statistical error here, we repeat the simulation for
N = 5× 103 particles, M = 103 times and we obtain an average terminal value of 1.5772
(with an average standard error of 0.06533, which agrees with the result in Table 1).
Comparing this to the 105 decoupled entry (which has very low statistical error) in Table
1, we can conclude the propagation of chaos error at least an order of magnitude smaller
than the statistical error.

Another example: a terminal condition function with steep slope

Let us consider the terminal condition G(x) =
(

tanh(a(x − b)) + 1
)
/2, for a large (G

can be understood as a mollified indicator function). Then EP[G(XT )] ≈ P(XT ≥ b). We
take the same set up as before but with a = 15 and b = 1 and note that the terminal
condition for the adjoint process takes the form,

pT = 2a
(

1− tanh
(
a
(
XT (u̇∗)− b

)))
.

We obtain the following table (we omit the times here since they are similar).

Monte Carlo (×10−9) Decoupled (×10−9) Complete (×10−9)

N Payoff Error Payoff Error Payoff Error

1 × 103 1.015 0.671 3.864 0.0250 8.456 0.101
5 × 103 1.093 0.752 3.952 0.0112 5.564 0.0185
1 × 104 8.829 7.071 3.910 0.0077 32.956 0.1520
5 × 104 1.106 0.271 3.970 0.0035 2.101 0.0024
1 × 105 5.158 1.990 3.901 0.0024 16.781 0.019

Table 2. Results from standard Monte Carlo and the importance sampling algorithms. Note that for
ease of presentation the payoff and error are all scaled by the factor 10−9.

The results in Table 2 highlight the key differences in the algorithms. Clearly this is
a difficult problem for standard Monte Carlo. The reason is that although G is mollified
it still changes value quickly over a small interval. For example G(0.25) ≈ 10−10, but
G(0.5) ≈ 10−7 and G(0.75) ≈ 10−4, hence a reasonably small change in the value of
the SDE can influence the outcome significantly. Besides, the probability of the solution
attaining a region with high value of G is quite low: for the standard Monte Carlo run,
only 60 of the 100, 000 particles were above 1/2 at the terminal time and none were
above 3/4. Hence standard Monte Carlo does not provide much information about the
most important region of the function, and importance sampling is likely to lead to a
considerable improvement.

The importance sampling schemes indeed provide reduced statistical errors, however,
this example highlights the differences between them. Although the complete measure
change does have a smaller statistical error than standard Monte Carlo, the overall error
is very high, as seen from wildly oscillating values of the estimator. We conjecture that
in this setting the propagation of chaos error dominates the statistical error, because the
importance sampling measure is very far from the original measure, which deteriorates
the quality of the estimation of the coefficients of the MV-SDE. Here, the decoupled
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algorithm appears to be superior since the estimated values are consistent and the error
decreases in the expected manner.

Remark 5.1 (Requirement for improved simulation). It is clear from these examples
that combining importance sampling with MV-SDEs can provide a major reduction in
the required computational cost. When using decoupling, unfortunately one has to ap-
proximate the law first, which is computationally expensive. Hence, one may look towards
more sophisticated simulation techniques to speed up the first run, for example the meth-
ods of [24] or towards multilevel Monte Carlo [26]. However, with the ability to almost
eliminate the variance one should always keep in mind the benefits from importance
sampling.

6. Proof of Main Results

We now provide the proofs of our two main theorems. Throughout we work under the
P-measure and we omit it as a superscript in our Brownian motions. Some arguments
align with those of [25] and we quote them where appropriate.

6.1. Complete measure change algorithm - proofs for Theorem
4.6

Continuity of the SDE w.r.t. Brownian motion is key as it allows to apply directly the
contraction principle transferring Schilder’s LDP for the Brownian motion to an LDP for
the solution of the SDE; otherwise difficulties would arise when using Varadhan’s lemma.
All results holds under Assumption 4.1.

Lemma 6.1. Fix N ∈ N, let Assumption 4.1 hold and let X ∈ Sp for p ≥ 2 denote the
N -dimensional strong solution to the SDE system defined in (4.7).

Then X is continuous w.r.t. the set of N Brownian motions in the uniform topology.

Proof. We wish to prove that the strong solution to (4.7) are continuous images of the
trajectories of the driving Brownian motions. In fact, using a know trick from random
dynamical systems, we can construct them pathwise for each ω ∈ Ω. Defining Y i :=
Xi − σW i,P, then Y i has dynamics

Y i,Nt (ω) = Xi
t(ω)− σW i,P

t (ω) = x0 +

∫ t

0

b

s,Xi,N
s (ω),

1

N

N∑
j=1

δXj,Ns (ω)

 ds

= x0 +

∫ t

0

b

s, Y i,Ns + σW i,P
s ,

1

N

N∑
j=1

δ(Y i,Ns +σW i,P
s )

 ds,

which is an ODE with random coefficients. The proof follows by appealing to Lemma 6.2
below in combination with assumption on the non-degeneracy of σ.
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Lemma 6.2. Let Assumption 4.1 hold and take g = (g1, · · · , gN ) ∈ C0([0, T ], (Rd)N ),
x0 ∈ Rd. Then there exists a unique f = (f1, · · · , fN ) ∈ C([0, T ], (Rd)N ) which satisfies
for t ∈ [0, T ]

f i(t) = x0 +

∫ t

0

b
(
s, f i(s),

1

N

N∑
j=1

δfj(s)

)
ds+ gi(t), i = 1, · · · , N.

The mapping
F : C0

(
[0, T ], (Rd)N

)
→ C

(
[0, T ], (Rd)N

)
, g 7→ f

is continuous and one-to-one. Moreover, the map F is locally Lipschitz.

Proof. Let t ∈ [0, T ] and i = 1, · · · , N . The proof takes several steps.
Step 1: Short time existence. From the continuity of the involved maps, Carathéodory’s

existence result for ODEs yields the existence of a solution f given g over a small time
interval.

Step 2: Uniqueness follows by a direct application of the one-sided Lipschitz condition.
Namely, given f, f̂ two solutions to the ODE for a fixed g, then computing the derivative
of |f(t)− f̂(t)|2, using the one-sided Lipschitz condition (where one adds and subtracts gi

in the inner product) and Grönwall’s inequality yields that |f(t)− f̂(t)|2 = 0 and hence
uniqueness. Note that each i-th system depends only on f i, gi and a cross dependency
on the remaining terms via the average component.

Step 3: A priori estimate and existence over longer intervals. Define the absolutely
continuous (wrt the Lebesgue measure) map ψ := f − g, then we have that ψ satisfies
the ordinary differential equation, (recall that g(0) = 0)

ψi(t) = x0 +

∫ t

0

b
(
s, ψi(s) + gi(s), νψ+g(s)

)
ds with νψ+g(s) :=

1

N

N∑
j=1

δψj(s)+gj(s),

(6.1)

where an estimate for ‖ψ‖∞ yields easily an inequality for ‖f‖∞ via the triangle inequal-
ity. Given g ∈ C0, we compute |ψi(t)|2,

|ψi(t)|2 = |x0|2 +

∫ t

0

2
〈
ψi(s), b

(
s, ψi(s) + gi(s), νψ+g(s)

)〉
ds

≤ |x0|2 +

∫ t

0

2L|ψi(s) + gi(s)|2 + |ψi(s)|2 + |b
(
s, gi(s), νψ+g(s)

)
|2ds (6.2)

≤ |x0|2 +

∫ t

0

(1 + 4L)|ψi(s)|2 + C(1 + |gi(s)|2(q+1)) + 2L
1

N

N∑
j=1

|ψj(s) + gj(s)|2ds,

(6.3)

where as before, on the first line, we added ±g to the LHS of the 〈, 〉-bracket and

±b
(
·, g(·), 1

N

∑N
j=1 δψj(·)+gj(·)

)
to its RHS, then to get to the second line we dominated

imsart-bj ver. 2014/10/16 file: dRST2018.IS-MVSDEs-2ndSubmission.tex date: January 24, 2020



36 G. dos Reis et al.

using the one-sided Lipschitz condition and Cauchy-Schwarz. In the last line we used the
growth conditions of b, that continuous maps in compact intervals are bounded and the
properties of the Wasserstein metric.

The average term appearing in the last term creates an additional problem solved by
first averaging the ODEs over i, obtaining an estimate for the term corresponding to the
average, then returning to the initial equation and inject it to obtain the sought estimate
for ‖ψi‖∞. Hence, averaging over i estimate, setting ψ̄N (t) := 1

N

∑d
i=1 |ψi(t)|2, using

that |a+ b| ≤ 2a2 + 2b2, re-arranging and Grönwall we have

ψ̄N (t) ≤ C
(
1 + |x0|2 +

∫ t

0

1

N

N∑
i=1

|gi(s)|2q+2ds
)

+ C

∫ t

0

ψ̄N (s)ds (6.4)

⇒ ‖ψ̄N‖∞ = sup
0≤t≤T

|ψN (t)| ≤ C
(
1 + |x0|2 + T sup

0≤s≤T

1

N

N∑
i=1

|gi(s)|2q+2
)
eCT .

Injecting the estimate for ‖ψ̄N‖∞ in (6.3), dominating and re-arranging we have

|ψi(t)|2 ≤ C
(

1 + |x0|2 + ‖ψ̄N‖∞ +

∫ t

0

|gi(s)|2q+2ds
)

+ C

∫ t

0

|ψi(s)|2ds. (6.5)

We conclude via Grönwall that ‖ψi‖∞ ≤ CR for some CR > 0 where all gi belong to
some Ball (in the uniform topology) of radius R centered around zero.

It is now clear that one can extend the solution of Step 1 from the small interval to any
interval of general length. One can simply repeat the above procedure a finite number of
times on finitely many adjacent intervals with recursively chosen boundary conditions.

Step 4. Continuity of ψ and f in the uniform topology. We continue using the construc-
tion provided by (6.1) where the continuity of ψ translates immediately to continuity of
f via linearity. Let g, ĝ ∈ C0 sit in some ball of radius R′ > 0 (centered around g) and

associate to them ψ, ψ̂ the respective solutions to (6.1) and respective empirical measures

νψ+g, νψ̂+ĝ. Define δg := g − ĝ and δψ := ψ − ψ̂. As in the previous step, we compute
|ψi(t)− ψ̂i(t)|2,

|δψi(t)|2 = 0 +

∫ t

0

〈
δψi(s), b

(
s, ψi(s) + gi(s), νψ+g(s)

)
− b
(
s, ψ̂i(s) + ĝi(s), νψ̂+ĝ(s)

)〉
ds

≤ C
∫ t

0

|δψi(s)|2 + |δgi(s)|2

+
〈
δψi(s), b

(
s, ψ̂i(s) + ĝi(s), νψ+g(s)

)
− b
(
s, ψ̂i(s) + ĝi(s), νψ̂+ĝ(s)

)〉
ds

−
〈
δgi(s), b

(
s, ψi(s) + gi(s), νψ+g(s)

)
− b
(
s, ψ̂i(s) + ĝi(s), νψ+g(s)

)〉
ds

≤ C
∫ t

0

|δψi(s)|2 + |δgi(s)|2 + |δψi(s)|2 + |W (2)(νψ+g(s), νψ̂+ĝ(s))|2 + |δgi(s)|B(s)ds,

where to the first line we added ±δg to the LHS of the 〈, 〉-bracket, ±b(s, ψ̂i(s) +
ĝi(s), νψ+g(s)) to its RHS and used the one-sided Lipschitz condition; on the final line
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we used that µ 7→ b(·, ·, µ) is W (2)-Lipschitz and B(s) := C
(
1+ |ψi(s)+gi(s)|q + |ψ̂i(s)+

ĝi(s)|q
)(
|δψi(s)| + |δgi(s)|

)
from the Locally Lipschitz condition. In fact, given the es-

timates for ‖ψ‖∞, ‖ψ̂‖∞ obtained in Step 3, we have B(s) ≤ CR,R′
(
|δψi(s)| + |δgi(s)|

)
(R,R′ are the Balls mentioned above). Hence,

|δgi(s)|B(s) ≤ CR,R′ |δgi(s)|
(
|δψi(s)|+ |δgi(s)|

)
≤ CR,R′ |δgi(s)|2 + CR,R′ |δψi(s)|2.

Using the properties of the Wasserstein metric we easily find that there exists C > 0 for
any s ∈ [0, T ]

|W (2)(νψ+g(s), νψ̂+ĝ(s))|2 ≤ C‖δg‖2∞ + C
1

N

N∑
j=1

|δψj(s)|2.

Joining all the estimates and re-organizing we have

|δψi(t)|2 ≤ CR,R′

(
‖δg‖2∞ +

∫ t

0

|δψi(s)|2 +
1

N

N∑
j=1

|δψj(s)|2ds
)
.

The proof now follows as in Step 3. We average the inequality over i and use Grönwall
to obtain ∥∥ 1

N

N∑
j=1

|δψj |2
∥∥
∞ ≤ CR,R′eT ‖δg‖2∞,

which is then injected in the above one yielding, after Grönwall, for yet another constant
CR,R′ > 0 uniformly in time

‖ψi − ψ̂i‖2∞ ≤ CR,R′‖g − ĝ‖2∞.

We can now conclude the aforementioned continuity of F . One argues that for any radius
R′ > 0 and for any sequence (gn)n≥1 converging to g in the uniform topology, there exists
M large enough such that all elements (gn)n>M are contained in the ball centered around
g and radius R′, then one can apply the above inequality and conclude. Moreover, it is
also clear that g 7→ F (g) = f is locally continuous uniformly on compacts of the uniform
topology.

We state an auxiliary bounding lemma, specialized for Cameron-Martin maps, which
in essence is a by-product of the previous proof.

Lemma 6.3. Fix N ∈ N and u ∈
(
HdT
)N

, let b and σ satisfy Assumption 4.1 and
consider the following system,

Xi,N
t (ut) = x0 +

∫ t

0

b
(
s,Xi,N

s (us),
1

N

N∑
j=1

δXj,Ns (us)

)
ds+ σuit for i = 1, . . . , N,
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with some abuse of notation and we have used Xi,N
t (ut) := Xi,N

t ((us)s≤t). Then the
following bound holds,

sup
1≤i≤N

|Xi,N
t (ut)|2 ≤ C

(
1 +

∫ t

0

sup
1≤i≤N

|σuis|2q+2ds
)
eC + C sup

1≤i≤N
|σuit|2,

where the involved constants C are uniform in time.

Proof. Let t ∈ [0, T ] and i = 1, . . . , N . We have |Xi,N
t (ut)| ≤ 2|Xi,N

t (ut)−σuit|2+2|σuit|2
and in relation to the proof of Lemma 6.2 one needs to take gi = σuit and revisit step
3: start at (6.4) and apply Grönwall directly to it, inject the estimate in (6.3) to get a
slight variant of (6.5), we have then

sup
1≤i≤N

|Xi,N
t (ut)| ≤ sup

1≤i≤N

{
2|Xi,N

t (ut)− σuit|2 + 2|σuit|2
}

≤ C
(
1 +

∫ t

0

sup
1≤i≤N

|σuis|2q+2ds
)
eC + C sup

1≤i≤N
|σuit|2,

where the involved constants C are uniform in the time variable.

We show that how one can bound an arbitrary moment of the particle system.

Lemma 6.4. Fix N ∈ N and let Assumption 4.1 hold. Then for any m ≥ 2 we obtain
the following bound for any t ∈ [0, T ],

EP[|X1,N
t (
√
εW 1, . . . ,

√
εWN )|m] ≤ C(Cm +m+ εm2) exp

(
C(m+ εm2)

)
.

Proof. For ease of notation we will write X1,N
t := X1,N

t (
√
εW 1, . . . ,

√
εWN ). By Itô’s

lemma we obtain,

|X1,N
t |m =|x0|m +

∫ t

0

m|X1,N
s |m−2

〈
X1,N
s , b(s,X1,N

s ,
1

N

N∑
j=1

δXj,Ns )
〉
ds

+m

∫ t

0

|X1,N
s |m−2

〈
X1,N
s , σ

√
εdW 1

s 〉

+
1

2

∫ t

0

m|X1,N
s |m−4

(
(m− 2)

(
|σ|2|X1,N

s |2 − 〈X1,N
s , σσᵀX1,N

s 〉
)

+ (m− 1)|σ|2|X1,N
s |2

)
εds.

By adding and subtracting drift terms (similar to the proof of Proposition 3.1), Cauchy-
Schwarz inequality and taking expectations we obtain,

EP[|X1,N
t |m]

≤ |x0|m + C

∫ t

0

mEP
[
|X1,N

s |m + |X1,N
s |m−1

( 1

N

N∑
j=1

|Xj,N
s |2

) 1
2

+ 1
]

+ εm2EP
[
|X1,N

s |m−2
]
ds,
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where we have used that
∫ t

0
EP[m2ε|σ|2|X1,N

s |2(m−1)]ds < ∞, since X1,N is an interact-
ing system of SDEs with constant diffusion and one-sided Lipschitz drift, hence has all
moments. By Young’s inequality,

|X1,N
s |m−1

( 1

N

N∑
j=1

|Xj,N
s |2

)1/2 ≤ (1− 1

m

)
|X1,N

s |m +
1

m

( 1

N

N∑
j=1

|Xj,N
s |2

)m/2
≤ |X1,N

s |m +
1

m

1

N

N∑
j=1

|Xj,N
s |m,

similarly one obtains |X1,N
s |m−k ≤ 1 + |X1,N

s |m, for k < m. Hence we obtain,

EP[|X1,N
t |m] ≤ |x0|m + C

∫ t

0

(m+ εm2)EP
[
|X1,N

s |m
]

+
1

N

N∑
j=1

EP
[
|Xj,N

s |m
]

+m+ εm2ds

≤ C(Cm +m+ εm2) + C

∫ t

0

(m+ εm2)EP
[
|X1,N

s |m
]
ds

≤ C(Cm +m+ εm2) exp
(
C(m+ εm2)

)
,

where the final bound comes from applying Grönwall’s inequality. Moreover, the bound
is uniform over the time variable.

We next show that one can use Varadhan’s lemma in this case.

Lemma 6.5. Fix N ∈ N, let h ∈ HdT and let Assumptions 4.2 and 4.1 hold.
Then the integrability condition in Varadhan’s lemma holds for (4.9). Namely for some

γ > 1

lim sup
ε→0

ε log ( EP [ exp (
γ

ε
(2 log

(
G̃1(
√
εW 1, . . . ,

√
εWN )

)
−
∫ T

0

〈ḣt,
√
εdW 1

t 〉+
1

2

∫ T

0

|ḣt|2dt ) ) ] ) <∞.

Proof. Using that h ∈ HdT is deterministic, ḣ ∈ L2
0(Rd) and Cauchy-Schwarz we obtain,

ε log

(
EP

[
exp

(
γ

ε

(
2 log(G̃1(

√
εW 1, . . . ,

√
εWN ))−

∫ T

0

〈ḣt,
√
εdW 1

t 〉+
1

2

∫ T

0

|ḣt|2dt
))])

≤ γ

2

∫ T

0

|ḣt|2dt+
ε

2
log

(
EP

[
exp

(
4γ

ε
log(G̃1(

√
εW 1, . . . ,

√
εWN ))

)])
+
ε

2
log

(
EP

[
exp

(
−2γ

ε

∫ T

0

〈ḣt,
√
εdW 1

t 〉

)])
.
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It is then sufficient to show that the three terms are finite when we take lim supε→0. The
first term is clearly finite by the conditions on h. Finiteness of the third term follows
from [25, pg.16], namely for all i ∈ {1, . . . , N} the stochastic integral has the distribution∫ T

0
〈ḣt,dW i

t 〉 ∼ N (0,
∫ T

0

∣∣ḣt|2dt
)
. Thus we obtain,

lim sup
ε→0

ε

2
log

(
EP

[
exp

(
−2γ

ε

∫ T

0

√
ε〈ḣt,dW 1

t 〉

)])
= γ2

∫ T

0

|ḣt|2dt <∞ .

The final term to consider is the , G̃1 term. By definition of G̃1 and Assumption 4.2 we
have,

4γ

ε
log
(
G̃1(
√
εW 1, . . . ,

√
εWN )

)
≤ C

4γ
ε + C

4γ
ε sup

0≤t≤T
|X1,N (

√
εW 1, . . . ,

√
εWN )|

4pγ
ε .

Again in order to simplify our equations let us denote X1,N
t := X1,N

t (
√
εW 1, . . . ,

√
εWN ),

applying Itô’s lemma and using similar arguments to that in the proof of Lemma 6.4 we
obtain

|X1,N
t |

4pγ
ε ≤|x0|

4pγ
ε +

∫ t

0

C
4pγ

ε
|X1,N

s |
4pγ
ε −2

(
|Xj,N

s |2 + |Xj,N
s |

( 1

N

N∑
j=1

|Xj,N
s |2

)1/2
+ 1
)

ds

+ C

∫ t

0

4pγ

ε
|X1,N

s |
4pγ
ε −2〈X1,N

s ,
√
εσdW 1

s 〉+ C
(4pγ)2

ε

∫ t

0

|X1,N
s |

4pγ
ε −2ds .

Taking supremum over time of both sides, noting sup0≤t≤T
∫ t

0
| · |ds =

∫ T
0
| · |ds and then

taking expectation one obtains,

EP[ sup
0≤t≤T

|X1,N
t |

4pγ
ε ]

≤ |x0|
4pγ
ε +

∫ T

0

C

ε
EP

[
|X1,N

s |
4pγ
ε −2

(
|Xj,N

s |2 + |Xj,N
s |

( 1

N

N∑
j=1

|Xj,N
s |2

)1/2
+ 1
)]

ds

+ EP

[
sup

0≤t≤T

∫ t

0

C

ε
|X1,N

s |
4pγ
ε −2〈X1,N

s ,
√
εσW 1

s 〉
]

+
C

ε

∫ T

0

EP

[
|X1,N

s |
4pγ
ε −2

]
ds .

Applying Buckholder-Davis-Gundy inequality along with Lemma 6.4, one can bound the
stochastic integral as,

EP

[
sup

0≤t≤T

∫ t

0

C

ε
|X1,N

s |
4pγ
ε −2〈X1,N

s ,
√
εσdW 1

s 〉
]
≤ C

ε
(1 +

√
εC

C
2ε ) exp

(
C

2ε

)
.

As is carried out in Lemma 6.4, applications of Young’s inequality and substituting this
bound in one obtains,

EP[ sup
0≤t≤T

|X1,N
t |

4pγ
ε ] ≤|x0|

4pγ
ε +

C

ε
(1 +

√
εC

C
2ε ) exp

(
C

2ε

)
+
C

ε

∫ T

0

EP

[
|X1,N

s |
4pγ
ε

]
+ 1ds .
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By using that EP

[
|X1,N

s |
4pγ
ε

]
≤ EP

[
sup0≤r≤s |X1,N

r |
4pγ
ε

]
and applying Grönwall’s in-

equality yields,

EP[ sup
0≤t≤T

|X1,N
t |

4pγ
ε ] ≤

(
C
C
ε +

C

ε
(1 +

√
εC

C
2ε ) exp

(C
2ε

))
exp

(
C

ε

)
≤
(
C
C
ε +

C

ε
(1 +

√
εC

C
2ε )
)

exp

(
2C

ε

)
.

Hence,

ε

2
log

(
EP

[
exp

(
4γ

ε
log(G̃1(

√
εW 1, . . . ,

√
εWN ))

)])
≤ ε

2
log

((
C
C
ε +

C

ε
(1 +

√
εC

C
2ε ) exp

(C
2ε

))
exp

(
C

ε

))
≤ ε

2
log

(
C
C
ε
C

ε
exp

(
2C

ε

))
≤ C(1 + log(C)) <∞.

To conclude, we have shown that all terms are finite and the result follows.

Proof of Theorem 4.6. The continuity of the SDE from Lemma 6.1 along with ex-
istence of a unique strong solution under Assumptions 4.1, ensure G̃1 is a continuous
function under Assumption 4.2.

By assumption, there exists a point (u1, û) ∈ (HdT )2 such that G̃(u1, û, . . . , û) > 0.
Further, noting by Assumption 4.2,

2 log
(
G̃1(u1, . . . , uN )

)
≤ 2 log(C1) + 2 log(C2) + p log

(
sup

0≤t≤T
|X1,N

t (u1, . . . , uN )|2
)

≤ 2 log(C1) + 2 log(C2) + p log
(

sup
0≤t≤T

sup
1≤i≤N

|Xi,N
t (u1, . . . , uN )|2

)
.

Then, by using Lemma 6.3 along with the observations,

sup
0≤s≤T

|σuis|p ≤ |σ|pCp/2
(∫ T

0

|u̇is|2ds
)p/2

and sup
1≤i≤N

∫ T

0

|u̇is|2ds ≤
∫ T

0

|u̇s|2ds,

we obtain

2 log
(
G̃1(u1, . . . , uN )

)
≤ C log(C) + C log

(∫ T

0

|u̇s|2ds
)
.

Following arguments in Lemma 7.1 of [25] we obtain the existence of maximisers. Simi-

larly, as ḣ only appears in (4.10) as, 1
2

∫ T
0
|ḣt− u̇t|2dt, it is clear there exists a minimising

h.
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Moreover, continuity of G̃ w.r.t. the Brownian motion and finite variation assumption
of ḣ implies the exponential term in (4.9) is continuous (see Lemma 7.6 in [25]) and that
the contraction principle applies. Thus to use Varadhan’s lemma we only need to check
the integrability condition, which is given in Lemma 6.5, hence relation (4.10) follows.

The remaining part to be proved is that (4.12) implies asymptotically optimal. This
essentially relies on showing that (4.11) is a lower bound for the RHS of (4.1). Using
the same arguments used to derive (4.1), one obtains the following expression for an
asymptotically optimal estimator

sup
u∈(HdT )N

{
2 log(G̃1(u1, . . . , uN ))− 1

2

∫ T

0

|u̇1
t |2dt− 1

2

∫ T

0

|u̇t|2dt

}
.

As (4.11) is a special case of the above supremum (taking u2 = · · · = uN ) it is then clear
(4.11) provides a lower bound.

Strict convexity along with the arguments in [25, page 18] yield the uniqueness which
completes the proof.

6.2. Decoupling algorithm - proofs for Theorem 4.5

We recall, that due to the independence of the original particle system from the SDE in
question, we work on the product of two probability spaces, consequently (since µN will
be a “realisation” coming from the space Ω̃) our results are all P̃-a.s.. As before, the first
result we need to prove is that the SDE is a continuous map of the Brownian motions,
the result follows Lemma 6.2.

Lemma 6.6. Let X̄ be defined as in (4.2), with coefficients and µN satisfying the
assumptions of Theorem 4.5. Then X̄ is a P⊗ P̃-a.s. continuous map of Brownian motion
in the uniform norm.

Proof. This proof is an adaptation of the proof of Lemma 6.1 making use of a suitable
adaptation of Lemma 6.2. For this case, the empirical measure µN is exogenously given
with the necessary good properties of integrability and time-continuity (see the assump-
tions of Theorem 4.5) and the proof of Lemma 6.2 can be simplified in several places.
We justify a few points.

The application of Carathéodory’s existence result for ODEs follows from the assumed
joint continuity of (t, x) 7→ b(t, x, µNt ) in combination with the growth assumptions. The
‖ · ‖∞ estimate follows as before, using the assumption that supt∈[0,T ]W

(2)(µNt , δ0) <∞
P̃-a.s. in inequality (6.2), where µNt replaces νψ+g and no further properties of µN are
needed, additionally, since µN is now fixed and independent of the solution, there is no
need for the averaging trick. For the final step, Step 4, the continuity is also simplified
mimicking the arguments there and those immediately above.
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Lemma 6.7. Take µN and u ∈ HdT , let b and σ satisfy Assumption 4.1 and consider
the following system,

X̄t(ut) = x0 +

∫ t

0

b
(
s, X̄s(us), µ

N
s

)
ds+ σut,

with some abuse of notation and we have used X̄t(ut) := Xt((us)s≤t). Then the following
bound holds,

|X̄t(ut)|2 ≤ C
(
1 +

∫ T

0

W (2)(µNt , δ0)2dt+

∫ t

0

|σus|2q+2ds
)
eC + C|σut|2, P̃− a.s.

where the involved constants C are uniform in time.

Proof. This proof is a simplified version of the proof of Lemma 6.3 (and based Lemma
6.2). In fact, one just needs to rewrite (6.2) for this setting and the result follow after a
few steps as in Lemma 6.3.

Before proving Varadhan’s lemma, the following bound is useful.

Lemma 6.8. Let X̄ be defined as in (4.2), with coefficients and µN satisfying the
assumptions of Theorem 4.5.

Then the following bound holds on the m-th moment of X̄ for m ≥ 2, P̃-a.s.

EP⊗P̃
[
|X̄t(
√
εW )|m|F̃

]
≤ C

(
Cm +m+ εm2 + sup

0≤s≤t
W (2)(µNs , δ0)m

)
exp

(
C(m+ εm2)

)
.

Proof. We do not give further details on this proof as it is similar to that of Lemma
6.4.

We now prove that the uniform integrability condition still holds, namely that we can
still apply Varadhan’s Lemma, in both settings.

Lemma 6.9. Let h ∈ HdT , then under the assumptions of Theorem 4.5 the integrability

condition in Varadhan’s lemma holds for (4.3). Namely, for some γ > 1 P̃-a.s.

lim sup
ε→0

ε logEP⊗P̃

[
exp

(
γ

ε

(
2 log(G(

√
εW ))−

∫ T

0

〈ḣt,
√
εdWt〉+

1

2

∫ T

0

|ḣt|2dt

))∣∣∣F̃] <∞.
Proof. The h terms can be dealt with using the same arguments as before. The term
we are interested in is the G term. Using arguments as in the proof of Lemma 6.5, we
only need to prove the following holds,

lim sup
ε→0

ε

2
log

(
EP⊗P̃

[
exp

(
4γ

ε
log
(
G(X̄(

√
εW ))

)) ∣∣∣F̃]) <∞ P̃-a.s.
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Many of the arguments here are similar to those appearing in the proof of Lemma 6.5,
we therefore give only a few steps. Although we shall often omit it, as we are working
with random variables, all bounds should be understood P̃-a.s. Again, by applying Itô’s
lemma on the decoupled system along with the properties of b we obtain,

EP⊗P̃
[

sup
0≤t≤T

|X̄t|
4pγ
ε |F̃

]
≤ |x0|

4pγ
ε +

∫ T

0

EP⊗P̃
[
C

4pγ

ε
|X̄s|

4pγ
2 −2

(
|X̄s|2 + |X̄s|W (2)(µNs , δ0) + |X̄s|

)
|F̃
]
ds

+ EP⊗P̃

[
sup

0≤t≤T

∫ t

0

|X̄s|
4pγ
ε −2〈X̄s,

√
εσdWs〉

∣∣∣F̃]
+ C

(4pγ)2

ε

∫ T

0

EP⊗P̃
[
C

4pγ

ε
|X̄s|

4pγ
2 −2|F̃

]
ds.

For the stochastic integral we use Burkholder-Davis-Gundy and Lemma 6.8. We also note
by Young’s inequality,

|X̄s|
4pγ
ε −1W (2)(µNs , δ0) ≤ |X̄s|

4pγ
ε +

ε

4pγ
W (2)(µNs , δ0)

4pγ
ε .

Noting W (2)(µNs , δ0) is an F̃-measurable random variable, we can therefore absorb it
into the constant C (but it should now be viewed as a F̃-measurable random variable).
Following arguments as in Lemma 6.5, one obtains,

EP⊗P̃
[

sup
0≤t≤T

|X̄t|
4pγ
ε |F̃

]
≤ (C

C
ε +

C

ε
) exp

(
2C

ε

)
.

One can finish off the proof by appealing to arguments as in Lemma 6.5.

We can now prove the second main theorem, the arguments follow similar lines to
those we used to conclude the proof of Theorem 4.6.

Proof of Theorem 4.5. The continuity of the SDE from Lemma 6.6 along with exis-
tence of a unique strong solution under Assumption 4.1, ensure G is a P̃-a.s. continuous
function under Assumption 4.2. We then obtain the existence of the maximiser by Lemma
6.7 and Lemma 7.1 of [25].

Moreover, the P̃-a.s. continuity of G w.r.t. the Brownian motion and finite variation of
ḣ implies that to use Varadhan’s lemma we only need to check the integrability condition,
which is given in Lemma 6.9. This with Lemma 7.6 in [25] is enough to complete the
proof by arguments on page 18 in [25].
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[30] Pinto, S. G., Rodŕıguez, S. P. and Torcal, J. M. [1997], ‘On the numerical solution

of stiff IVPs by Lobatto IIIA Runge-Kutta methods’, Journal of computational and
applied mathematics 82(1-2), 129–148.

[31] Robertson, S. [2010], ‘Sample path large deviations and optimal importance sam-
pling for stochastic volatility models’, Stochastic Processes and their applications
120(1), 66–83.

[32] Teng, H.-W., Fuh, C.-D. and Chen, C.-C. [2016], ‘On an automatic and optimal
importance sampling approach with applications in finance’, Quantitative Finance
16(8), 1259–1271.

[33] Yong, J. and Zhou, X. Y. [1999], Stochastic controls: Hamiltonian systems and HJB
equations, Vol. 43, Springer Science & Business Media.

imsart-bj ver. 2014/10/16 file: dRST2018.IS-MVSDEs-2ndSubmission.tex date: January 24, 2020


	Introduction
	Preliminaries
	McKean-Vlasov stochastic differential equations
	Large Deviation Principles
	Importance Sampling and large deviations

	Importance sampling for MV-SDEs
	A decoupling argument: fixing the empirical law
	Complete Measure Change
	The Propagation of chaos result for scalar interactions
	A second PoC with general measure dependency
	The Complete Measure Change Algorithm


	Optimal Importance Sampling for McKean-Vlasov SDEs
	Preliminaries
	The decoupling algorithm
	The complete measure change algorithm
	Computing the optimal measure change

	Example: Kuramoto model
	Proof of Main Results
	Complete measure change algorithm - proofs for Theorem 4.6
	Decoupling algorithm - proofs for Theorem 4.5

	References

